Deep dynamical models of single-cell multiomic velocities predict loss-of-function and rescue perturbations in B cells Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.04.24.650458
We present DynaVelo, a generative neural ordinary differential equation (ODE) model that learns the joint dynamics of gene expression and transcription factor (TF) motif activities in evolving cell systems using single-cell multiome data. DynaVelo leverages partial RNA velocity information together with single-cell TF motif accessibility data to improve the modeling of cell state dynamics and identification of TF drivers. We show that DynaVelo recovers the complex and bifurcating in vivo dynamics of wildtype murine germinal center (GC) B cells and reveals how these cell dynamics change under loss-of-function mutations in epigenetic regulators. DynaVelo resolves how TF motif activities evolve along latent time trajectories using analysis of training cells or through generated trajectories from the model. In silico perturbation analysis further enables DynaVelo to infer dynamic and cell-state-specific gene regulatory networks (GRNs), recovering many known TF-to-gene edges in the wildtype GC GRN and predicting those that are disrupted in mutants. Finally, in silico gene and TF perturbations allow both the prediction of cell dynamics under loss-of-function genetic mutations and the identification of TF perturbations to rescue loss-of-function dynamic and immunological phenotypes. DynaVelo therefore provides a powerful new deep learning framework for modeling and perturbing dynamic cell systems by harnessing single-cell multiome data sets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.04.24.650458
- https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409847126
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409847126Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.04.24.650458Digital Object Identifier
- Title
-
Deep dynamical models of single-cell multiomic velocities predict loss-of-function and rescue perturbations in B cellsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-26Full publication date if available
- Authors
-
Alireza Karbalayghareh, Darko Barišić, Christopher R. Chin, Ari Melnick, Christina S. LeslieList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.04.24.650458Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdfDirect OA link when available
- Concepts
-
In silico, Ode, Computational biology, Biology, Transcription factor, Gene regulatory network, Gene, Genetics, Computer science, Gene expression, Mathematics, Applied mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409847126 |
|---|---|
| doi | https://doi.org/10.1101/2025.04.24.650458 |
| ids.doi | https://doi.org/10.1101/2025.04.24.650458 |
| ids.openalex | https://openalex.org/W4409847126 |
| fwci | 0.0 |
| type | preprint |
| title | Deep dynamical models of single-cell multiomic velocities predict loss-of-function and rescue perturbations in B cells |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10621 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9944999814033508 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene Regulatory Network Analysis |
| topics[1].id | https://openalex.org/T11289 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.987500011920929 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Single-cell and spatial transcriptomics |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9434999823570251 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2775905019 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7217562198638916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192572 |
| concepts[0].display_name | In silico |
| concepts[1].id | https://openalex.org/C34862557 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4804655909538269 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[1].display_name | Ode |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.46627098321914673 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4496670961380005 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C86339819 |
| concepts[4].level | 3 |
| concepts[4].score | 0.43886905908584595 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[4].display_name | Transcription factor |
| concepts[5].id | https://openalex.org/C67339327 |
| concepts[5].level | 4 |
| concepts[5].score | 0.42538049817085266 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1502576 |
| concepts[5].display_name | Gene regulatory network |
| concepts[6].id | https://openalex.org/C104317684 |
| concepts[6].level | 2 |
| concepts[6].score | 0.37594741582870483 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[6].display_name | Gene |
| concepts[7].id | https://openalex.org/C54355233 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3441418409347534 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[7].display_name | Genetics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3368719816207886 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C150194340 |
| concepts[9].level | 3 |
| concepts[9].score | 0.17822027206420898 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[9].display_name | Gene expression |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13093429803848267 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C28826006 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[11].display_name | Applied mathematics |
| keywords[0].id | https://openalex.org/keywords/in-silico |
| keywords[0].score | 0.7217562198638916 |
| keywords[0].display_name | In silico |
| keywords[1].id | https://openalex.org/keywords/ode |
| keywords[1].score | 0.4804655909538269 |
| keywords[1].display_name | Ode |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.46627098321914673 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.4496670961380005 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/transcription-factor |
| keywords[4].score | 0.43886905908584595 |
| keywords[4].display_name | Transcription factor |
| keywords[5].id | https://openalex.org/keywords/gene-regulatory-network |
| keywords[5].score | 0.42538049817085266 |
| keywords[5].display_name | Gene regulatory network |
| keywords[6].id | https://openalex.org/keywords/gene |
| keywords[6].score | 0.37594741582870483 |
| keywords[6].display_name | Gene |
| keywords[7].id | https://openalex.org/keywords/genetics |
| keywords[7].score | 0.3441418409347534 |
| keywords[7].display_name | Genetics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3368719816207886 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/gene-expression |
| keywords[9].score | 0.17822027206420898 |
| keywords[9].display_name | Gene expression |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.13093429803848267 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2025.04.24.650458 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.04.24.650458 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061428083 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1723-9355 |
| authorships[0].author.display_name | Alireza Karbalayghareh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alireza Karbalayghareh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5003852336 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7007-9138 |
| authorships[1].author.display_name | Darko Barišić |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Darko Barisic |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080920057 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2140-3197 |
| authorships[2].author.display_name | Christopher R. Chin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christopher R. Chin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5019770989 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8074-2287 |
| authorships[3].author.display_name | Ari Melnick |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ari Melnick |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5085231879 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4571-5910 |
| authorships[4].author.display_name | Christina S. Leslie |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Christina S. Leslie |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep dynamical models of single-cell multiomic velocities predict loss-of-function and rescue perturbations in B cells |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10621 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9944999814033508 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene Regulatory Network Analysis |
| related_works | https://openalex.org/W2120625059, https://openalex.org/W2513589746, https://openalex.org/W2153919606, https://openalex.org/W2003194288, https://openalex.org/W2213189664, https://openalex.org/W2074002899, https://openalex.org/W2062254828, https://openalex.org/W4237480606, https://openalex.org/W2936968863, https://openalex.org/W2469875185 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.04.24.650458 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.04.24.650458 |
| primary_location.id | doi:10.1101/2025.04.24.650458 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/04/26/2025.04.24.650458.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.04.24.650458 |
| publication_date | 2025-04-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4396894869, https://openalex.org/W2939422961, https://openalex.org/W2739492614, https://openalex.org/W3093858607, https://openalex.org/W2979911343, https://openalex.org/W2889236955, https://openalex.org/W3164839005, https://openalex.org/W4311943826, https://openalex.org/W3156830838, https://openalex.org/W3131450268, https://openalex.org/W2222000795, https://openalex.org/W2793965282, https://openalex.org/W2985765936, https://openalex.org/W2752426001, https://openalex.org/W2766437506, https://openalex.org/W3047141442, https://openalex.org/W4295880122, https://openalex.org/W3194520274, https://openalex.org/W4210575300, https://openalex.org/W4389473167, https://openalex.org/W3082857338, https://openalex.org/W2119079421, https://openalex.org/W2078526277, https://openalex.org/W1973062929, https://openalex.org/W2750049634, https://openalex.org/W2129509656, https://openalex.org/W2521741241, https://openalex.org/W4210658740, https://openalex.org/W4394582164, https://openalex.org/W3092453598, https://openalex.org/W2921924623, https://openalex.org/W3131634425, https://openalex.org/W2171808845, https://openalex.org/W3046196569, https://openalex.org/W2800392236, https://openalex.org/W1981276685 |
| referenced_works_count | 36 |
| abstract_inverted_index.B | 78 |
| abstract_inverted_index.a | 4, 184 |
| abstract_inverted_index.GC | 140 |
| abstract_inverted_index.In | 116 |
| abstract_inverted_index.TF | 43, 58, 96, 155, 172 |
| abstract_inverted_index.We | 1, 60 |
| abstract_inverted_index.by | 197 |
| abstract_inverted_index.in | 26, 69, 90, 137, 148, 151 |
| abstract_inverted_index.of | 17, 51, 57, 72, 106, 161, 171 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 47, 123, 174 |
| abstract_inverted_index.GRN | 141 |
| abstract_inverted_index.RNA | 37 |
| abstract_inverted_index.and | 20, 55, 67, 80, 126, 142, 154, 168, 178, 192 |
| abstract_inverted_index.are | 146 |
| abstract_inverted_index.for | 190 |
| abstract_inverted_index.how | 82, 95 |
| abstract_inverted_index.new | 186 |
| abstract_inverted_index.the | 14, 49, 65, 114, 138, 159, 169 |
| abstract_inverted_index.(GC) | 77 |
| abstract_inverted_index.(TF) | 23 |
| abstract_inverted_index.both | 158 |
| abstract_inverted_index.cell | 28, 52, 84, 162, 195 |
| abstract_inverted_index.data | 46, 201 |
| abstract_inverted_index.deep | 187 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.gene | 18, 128, 153 |
| abstract_inverted_index.many | 133 |
| abstract_inverted_index.show | 61 |
| abstract_inverted_index.that | 12, 62, 145 |
| abstract_inverted_index.time | 102 |
| abstract_inverted_index.vivo | 70 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.(ODE) | 10 |
| abstract_inverted_index.allow | 157 |
| abstract_inverted_index.along | 100 |
| abstract_inverted_index.cells | 79, 108 |
| abstract_inverted_index.data. | 33 |
| abstract_inverted_index.edges | 136 |
| abstract_inverted_index.infer | 124 |
| abstract_inverted_index.joint | 15 |
| abstract_inverted_index.known | 134 |
| abstract_inverted_index.model | 11 |
| abstract_inverted_index.motif | 24, 44, 97 |
| abstract_inverted_index.sets. | 202 |
| abstract_inverted_index.state | 53 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.those | 144 |
| abstract_inverted_index.under | 87, 164 |
| abstract_inverted_index.using | 30, 104 |
| abstract_inverted_index.center | 76 |
| abstract_inverted_index.change | 86 |
| abstract_inverted_index.evolve | 99 |
| abstract_inverted_index.factor | 22 |
| abstract_inverted_index.latent | 101 |
| abstract_inverted_index.learns | 13 |
| abstract_inverted_index.model. | 115 |
| abstract_inverted_index.murine | 74 |
| abstract_inverted_index.neural | 6 |
| abstract_inverted_index.rescue | 175 |
| abstract_inverted_index.silico | 117, 152 |
| abstract_inverted_index.(GRNs), | 131 |
| abstract_inverted_index.complex | 66 |
| abstract_inverted_index.dynamic | 125, 177, 194 |
| abstract_inverted_index.enables | 121 |
| abstract_inverted_index.further | 120 |
| abstract_inverted_index.genetic | 166 |
| abstract_inverted_index.improve | 48 |
| abstract_inverted_index.partial | 36 |
| abstract_inverted_index.present | 2 |
| abstract_inverted_index.reveals | 81 |
| abstract_inverted_index.systems | 29, 196 |
| abstract_inverted_index.through | 110 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.DynaVelo | 34, 63, 93, 122, 181 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.analysis | 105, 119 |
| abstract_inverted_index.drivers. | 59 |
| abstract_inverted_index.dynamics | 16, 54, 71, 85, 163 |
| abstract_inverted_index.equation | 9 |
| abstract_inverted_index.evolving | 27 |
| abstract_inverted_index.germinal | 75 |
| abstract_inverted_index.learning | 188 |
| abstract_inverted_index.modeling | 50, 191 |
| abstract_inverted_index.multiome | 32, 200 |
| abstract_inverted_index.mutants. | 149 |
| abstract_inverted_index.networks | 130 |
| abstract_inverted_index.ordinary | 7 |
| abstract_inverted_index.powerful | 185 |
| abstract_inverted_index.provides | 183 |
| abstract_inverted_index.recovers | 64 |
| abstract_inverted_index.resolves | 94 |
| abstract_inverted_index.together | 40 |
| abstract_inverted_index.training | 107 |
| abstract_inverted_index.velocity | 38 |
| abstract_inverted_index.wildtype | 73, 139 |
| abstract_inverted_index.DynaVelo, | 3 |
| abstract_inverted_index.disrupted | 147 |
| abstract_inverted_index.framework | 189 |
| abstract_inverted_index.generated | 111 |
| abstract_inverted_index.leverages | 35 |
| abstract_inverted_index.mutations | 89, 167 |
| abstract_inverted_index.therefore | 182 |
| abstract_inverted_index.TF-to-gene | 135 |
| abstract_inverted_index.activities | 25, 98 |
| abstract_inverted_index.epigenetic | 91 |
| abstract_inverted_index.expression | 19 |
| abstract_inverted_index.generative | 5 |
| abstract_inverted_index.harnessing | 198 |
| abstract_inverted_index.perturbing | 193 |
| abstract_inverted_index.predicting | 143 |
| abstract_inverted_index.prediction | 160 |
| abstract_inverted_index.recovering | 132 |
| abstract_inverted_index.regulatory | 129 |
| abstract_inverted_index.bifurcating | 68 |
| abstract_inverted_index.information | 39 |
| abstract_inverted_index.phenotypes. | 180 |
| abstract_inverted_index.regulators. | 92 |
| abstract_inverted_index.single-cell | 31, 42, 199 |
| abstract_inverted_index.differential | 8 |
| abstract_inverted_index.perturbation | 118 |
| abstract_inverted_index.trajectories | 103, 112 |
| abstract_inverted_index.accessibility | 45 |
| abstract_inverted_index.immunological | 179 |
| abstract_inverted_index.perturbations | 156, 173 |
| abstract_inverted_index.transcription | 21 |
| abstract_inverted_index.identification | 56, 170 |
| abstract_inverted_index.loss-of-function | 88, 165, 176 |
| abstract_inverted_index.cell-state-specific | 127 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.13739045 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |