Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1186/s12859-023-05398-7
Pathogenic bacteria present a major threat to human health, causing various infections and illnesses, and in some cases, even death. The accurate identification of these bacteria is crucial, but it can be challenging due to the similarities between different species and genera. This is where automated classification using convolutional neural network (CNN) models can help, as it can provide more accurate, authentic, and standardized results.In this study, we aimed to create a larger and balanced dataset by image patching and applied different variations of CNN models, including training from scratch, fine-tuning, and weight adjustment, and data augmentation through random rotation, reflection, and translation. The results showed that the best results were achieved through augmentation and fine-tuning of deep models. We also modified existing architectures, such as InceptionV3 and MobileNetV2, to better capture complex features. The robustness of the proposed ensemble model was evaluated using two data splits (7:2:1 and 6:2:2) to see how performance changed as the training data was increased from 10 to 20%. In both cases, the model exhibited exceptional performance. For the 7:2:1 split, the model achieved an accuracy of 99.91%, F-Score of 98.95%, precision of 98.98%, recall of 98.96%, and MCC of 98.92%. For the 6:2:2 split, the model yielded an accuracy of 99.94%, F-Score of 99.28%, precision of 99.31%, recall of 98.96%, and MCC of 99.26%. This demonstrates that automatic classification using the ensemble model can be a valuable tool for diagnostic staff and microbiologists in accurately identifying pathogenic bacteria, which in turn can help control epidemics and minimize their social and economic impact.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12859-023-05398-7
- https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7
- OA Status
- gold
- Cited By
- 13
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382797888
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382797888Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12859-023-05398-7Digital Object Identifier
- Title
-
Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-01Full publication date if available
- Authors
-
Fareed Ahmad, Muhammad Usman Ghani Khan, Ahsen Tahir, Farhan MasudList of authors in order
- Landing page
-
https://doi.org/10.1186/s12859-023-05398-7Publisher landing page
- PDF URL
-
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Convolutional neural network, F1 score, Robustness (evolution), Pattern recognition (psychology), Random forest, Recall, Ensemble forecasting, Deep learning, Ensemble learning, Machine learning, Biology, Gene, Philosophy, Biochemistry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 6, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382797888 |
|---|---|
| doi | https://doi.org/10.1186/s12859-023-05398-7 |
| ids.doi | https://doi.org/10.1186/s12859-023-05398-7 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37393255 |
| ids.openalex | https://openalex.org/W4382797888 |
| fwci | 2.82240729 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D058872 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Epidemics |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D058872 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Epidemics |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization |
| biblio.issue | 1 |
| biblio.volume | 24 |
| biblio.last_page | 273 |
| biblio.first_page | 273 |
| topics[0].id | https://openalex.org/T13114 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Image Processing Techniques and Applications |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.974399983882904 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list.value | 1690 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2072 |
| apc_paid.value | 1690 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2072 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7194374799728394 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7102502584457397 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6760240793228149 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C148524875 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6437370777130127 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[3].display_name | F1 score |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6291317343711853 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5679993033409119 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C169258074 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5676147937774658 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[6].display_name | Random forest |
| concepts[7].id | https://openalex.org/C100660578 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5228853225708008 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18733 |
| concepts[7].display_name | Recall |
| concepts[8].id | https://openalex.org/C119898033 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48352551460266113 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[8].display_name | Ensemble forecasting |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4741648733615875 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C45942800 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41016873717308044 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[10].display_name | Ensemble learning |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3849062919616699 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09995076060295105 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C55493867 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[15].display_name | Biochemistry |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7194374799728394 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7102502584457397 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6760240793228149 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/f1-score |
| keywords[3].score | 0.6437370777130127 |
| keywords[3].display_name | F1 score |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.6291317343711853 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5679993033409119 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/random-forest |
| keywords[6].score | 0.5676147937774658 |
| keywords[6].display_name | Random forest |
| keywords[7].id | https://openalex.org/keywords/recall |
| keywords[7].score | 0.5228853225708008 |
| keywords[7].display_name | Recall |
| keywords[8].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[8].score | 0.48352551460266113 |
| keywords[8].display_name | Ensemble forecasting |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.4741648733615875 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/ensemble-learning |
| keywords[10].score | 0.41016873717308044 |
| keywords[10].display_name | Ensemble learning |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3849062919616699 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.09995076060295105 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1186/s12859-023-05398-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S19032547 |
| locations[0].source.issn | 1471-2105 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2105 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1186/s12859-023-05398-7 |
| locations[1].id | pmid:37393255 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37393255 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10315052 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10315052/pdf/12859_2023_Article_5398.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10315052 |
| locations[3].id | pmh:oai:doaj.org/article:389fa491d0764c6fa6d900471731d02e |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Bioinformatics, Vol 24, Iss 1, Pp 1-19 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/389fa491d0764c6fa6d900471731d02e |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101805377 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fareed Ahmad |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Engineering and Technology, G.T. Road, Lahore, Punjab, 54890, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I142732210 |
| authorships[0].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fareed Ahmad |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Engineering and Technology, G.T. Road, Lahore, Punjab, 54890, Pakistan |
| authorships[1].author.id | https://openalex.org/A5007976764 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6733-2569 |
| authorships[1].author.display_name | Muhammad Usman Ghani Khan |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Engineering and Technology, G.T. Road, Lahore, Punjab, 54890, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I142732210 |
| authorships[1].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Usman Ghani Khan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Engineering and Technology, G.T. Road, Lahore, Punjab, 54890, Pakistan |
| authorships[2].author.id | https://openalex.org/A5019898978 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8247-9390 |
| authorships[2].author.display_name | Ahsen Tahir |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I142732210 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Engineering and Technology, G.T. road, Lahore, Punjab, 54890, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I142732210 |
| authorships[2].institutions[0].ror | https://ror.org/0051w2v06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I142732210 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | University of Engineering and Technology Lahore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahsen Tahir |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, University of Engineering and Technology, G.T. road, Lahore, Punjab, 54890, Pakistan |
| authorships[3].author.id | https://openalex.org/A5071983039 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4076-1600 |
| authorships[3].author.display_name | Farhan Masud |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79839403 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Statistics and Computer Science, Faculty of Life Sciences Business Management, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Punjab, 54000, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I79839403 |
| authorships[3].institutions[0].ror | https://ror.org/00g325k81 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79839403 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | University of Veterinary and Animal Sciences |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Farhan Masud |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Statistics and Computer Science, Faculty of Life Sciences Business Management, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Punjab, 54000, Pakistan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep ensemble approach for pathogen classification in large-scale images using patch-based training and hyper-parameter optimization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13114 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Image Processing Techniques and Applications |
| related_works | https://openalex.org/W2944292463, https://openalex.org/W3014252901, https://openalex.org/W2188759683, https://openalex.org/W2794896638, https://openalex.org/W4317376680, https://openalex.org/W4360777922, https://openalex.org/W1807784185, https://openalex.org/W3208169454, https://openalex.org/W3202800081, https://openalex.org/W1909207154 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12859-023-05398-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S19032547 |
| best_oa_location.source.issn | 1471-2105 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2105 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12859-023-05398-7 |
| primary_location.id | doi:10.1186/s12859-023-05398-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S19032547 |
| primary_location.source.issn | 1471-2105 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2105 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05398-7 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1186/s12859-023-05398-7 |
| publication_date | 2023-07-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2792665188, https://openalex.org/W4211223413, https://openalex.org/W2779019546, https://openalex.org/W3041832132, https://openalex.org/W2163605009, https://openalex.org/W2097117768, https://openalex.org/W4394670654, https://openalex.org/W2963163009, https://openalex.org/W2183341477, https://openalex.org/W2108598243, https://openalex.org/W1724369340, https://openalex.org/W2948346016, https://openalex.org/W4238291540, https://openalex.org/W4287998657, https://openalex.org/W3006283135, https://openalex.org/W3037730313, https://openalex.org/W3114917765, https://openalex.org/W2904793365, https://openalex.org/W2912222853, https://openalex.org/W2776922069, https://openalex.org/W4313478111, https://openalex.org/W2970985632, https://openalex.org/W2770456481, https://openalex.org/W2253429366, https://openalex.org/W2900595477, https://openalex.org/W2194775991, https://openalex.org/W2581082771, https://openalex.org/W2883718074, https://openalex.org/W2955280797 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 4, 72, 233 |
| abstract_inverted_index.10 | 163 |
| abstract_inverted_index.In | 166 |
| abstract_inverted_index.We | 120 |
| abstract_inverted_index.an | 181, 205 |
| abstract_inverted_index.as | 56, 126, 156 |
| abstract_inverted_index.be | 32, 232 |
| abstract_inverted_index.by | 77 |
| abstract_inverted_index.in | 16, 241, 247 |
| abstract_inverted_index.is | 27, 44 |
| abstract_inverted_index.it | 30, 57 |
| abstract_inverted_index.of | 24, 84, 117, 137, 183, 186, 189, 192, 196, 207, 210, 213, 216, 220 |
| abstract_inverted_index.to | 7, 35, 70, 130, 151, 164 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.CNN | 85 |
| abstract_inverted_index.For | 174, 198 |
| abstract_inverted_index.MCC | 195, 219 |
| abstract_inverted_index.The | 21, 104, 135 |
| abstract_inverted_index.and | 13, 15, 41, 63, 74, 80, 92, 95, 102, 115, 128, 149, 194, 218, 239, 253, 257 |
| abstract_inverted_index.but | 29 |
| abstract_inverted_index.can | 31, 54, 58, 231, 249 |
| abstract_inverted_index.due | 34 |
| abstract_inverted_index.for | 236 |
| abstract_inverted_index.how | 153 |
| abstract_inverted_index.see | 152 |
| abstract_inverted_index.the | 36, 108, 138, 157, 169, 175, 178, 199, 202, 228 |
| abstract_inverted_index.two | 145 |
| abstract_inverted_index.was | 142, 160 |
| abstract_inverted_index.20%. | 165 |
| abstract_inverted_index.This | 43, 222 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.best | 109 |
| abstract_inverted_index.both | 167 |
| abstract_inverted_index.data | 96, 146, 159 |
| abstract_inverted_index.deep | 118 |
| abstract_inverted_index.even | 19 |
| abstract_inverted_index.from | 89, 162 |
| abstract_inverted_index.help | 250 |
| abstract_inverted_index.more | 60 |
| abstract_inverted_index.some | 17 |
| abstract_inverted_index.such | 125 |
| abstract_inverted_index.that | 107, 224 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.tool | 235 |
| abstract_inverted_index.turn | 248 |
| abstract_inverted_index.were | 111 |
| abstract_inverted_index.(CNN) | 52 |
| abstract_inverted_index.6:2:2 | 200 |
| abstract_inverted_index.7:2:1 | 176 |
| abstract_inverted_index.aimed | 69 |
| abstract_inverted_index.help, | 55 |
| abstract_inverted_index.human | 8 |
| abstract_inverted_index.image | 78 |
| abstract_inverted_index.major | 5 |
| abstract_inverted_index.model | 141, 170, 179, 203, 230 |
| abstract_inverted_index.staff | 238 |
| abstract_inverted_index.their | 255 |
| abstract_inverted_index.these | 25 |
| abstract_inverted_index.using | 48, 144, 227 |
| abstract_inverted_index.where | 45 |
| abstract_inverted_index.which | 246 |
| abstract_inverted_index.(7:2:1 | 148 |
| abstract_inverted_index.6:2:2) | 150 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.cases, | 18, 168 |
| abstract_inverted_index.create | 71 |
| abstract_inverted_index.death. | 20 |
| abstract_inverted_index.larger | 73 |
| abstract_inverted_index.models | 53 |
| abstract_inverted_index.neural | 50 |
| abstract_inverted_index.random | 99 |
| abstract_inverted_index.recall | 191, 215 |
| abstract_inverted_index.showed | 106 |
| abstract_inverted_index.social | 256 |
| abstract_inverted_index.split, | 177, 201 |
| abstract_inverted_index.splits | 147 |
| abstract_inverted_index.study, | 67 |
| abstract_inverted_index.threat | 6 |
| abstract_inverted_index.weight | 93 |
| abstract_inverted_index.98.92%. | 197 |
| abstract_inverted_index.98.95%, | 187 |
| abstract_inverted_index.98.96%, | 193, 217 |
| abstract_inverted_index.98.98%, | 190 |
| abstract_inverted_index.99.26%. | 221 |
| abstract_inverted_index.99.28%, | 211 |
| abstract_inverted_index.99.31%, | 214 |
| abstract_inverted_index.99.91%, | 184 |
| abstract_inverted_index.99.94%, | 208 |
| abstract_inverted_index.F-Score | 185, 209 |
| abstract_inverted_index.applied | 81 |
| abstract_inverted_index.between | 38 |
| abstract_inverted_index.capture | 132 |
| abstract_inverted_index.causing | 10 |
| abstract_inverted_index.changed | 155 |
| abstract_inverted_index.complex | 133 |
| abstract_inverted_index.control | 251 |
| abstract_inverted_index.dataset | 76 |
| abstract_inverted_index.genera. | 42 |
| abstract_inverted_index.health, | 9 |
| abstract_inverted_index.impact. | 259 |
| abstract_inverted_index.models, | 86 |
| abstract_inverted_index.models. | 119 |
| abstract_inverted_index.network | 51 |
| abstract_inverted_index.present | 3 |
| abstract_inverted_index.provide | 59 |
| abstract_inverted_index.results | 105, 110 |
| abstract_inverted_index.species | 40 |
| abstract_inverted_index.through | 98, 113 |
| abstract_inverted_index.various | 11 |
| abstract_inverted_index.yielded | 204 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accuracy | 182, 206 |
| abstract_inverted_index.accurate | 22 |
| abstract_inverted_index.achieved | 112, 180 |
| abstract_inverted_index.bacteria | 2, 26 |
| abstract_inverted_index.balanced | 75 |
| abstract_inverted_index.crucial, | 28 |
| abstract_inverted_index.economic | 258 |
| abstract_inverted_index.ensemble | 140, 229 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.minimize | 254 |
| abstract_inverted_index.modified | 122 |
| abstract_inverted_index.patching | 79 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.scratch, | 90 |
| abstract_inverted_index.training | 88, 158 |
| abstract_inverted_index.valuable | 234 |
| abstract_inverted_index.accurate, | 61 |
| abstract_inverted_index.automated | 46 |
| abstract_inverted_index.automatic | 225 |
| abstract_inverted_index.bacteria, | 245 |
| abstract_inverted_index.different | 39, 82 |
| abstract_inverted_index.epidemics | 252 |
| abstract_inverted_index.evaluated | 143 |
| abstract_inverted_index.exhibited | 171 |
| abstract_inverted_index.features. | 134 |
| abstract_inverted_index.including | 87 |
| abstract_inverted_index.increased | 161 |
| abstract_inverted_index.precision | 188, 212 |
| abstract_inverted_index.rotation, | 100 |
| abstract_inverted_index.Pathogenic | 1 |
| abstract_inverted_index.accurately | 242 |
| abstract_inverted_index.authentic, | 62 |
| abstract_inverted_index.diagnostic | 237 |
| abstract_inverted_index.illnesses, | 14 |
| abstract_inverted_index.infections | 12 |
| abstract_inverted_index.pathogenic | 244 |
| abstract_inverted_index.results.In | 65 |
| abstract_inverted_index.robustness | 136 |
| abstract_inverted_index.variations | 83 |
| abstract_inverted_index.InceptionV3 | 127 |
| abstract_inverted_index.adjustment, | 94 |
| abstract_inverted_index.challenging | 33 |
| abstract_inverted_index.exceptional | 172 |
| abstract_inverted_index.fine-tuning | 116 |
| abstract_inverted_index.identifying | 243 |
| abstract_inverted_index.performance | 154 |
| abstract_inverted_index.reflection, | 101 |
| abstract_inverted_index.MobileNetV2, | 129 |
| abstract_inverted_index.augmentation | 97, 114 |
| abstract_inverted_index.demonstrates | 223 |
| abstract_inverted_index.fine-tuning, | 91 |
| abstract_inverted_index.performance. | 173 |
| abstract_inverted_index.similarities | 37 |
| abstract_inverted_index.standardized | 64 |
| abstract_inverted_index.translation. | 103 |
| abstract_inverted_index.convolutional | 49 |
| abstract_inverted_index.architectures, | 124 |
| abstract_inverted_index.classification | 47, 226 |
| abstract_inverted_index.identification | 23 |
| abstract_inverted_index.microbiologists | 240 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.800000011920929 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.90197967 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |