Deep ensemble of texture maps for false positive reduction in mammograms Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2318/1/012038
Worldwide, breast cancer is a life-threatening disease attributing to increased mortality rates among women. Mammograms are commonly used for screening breast cancer in asymptomatic stages. However, the subtle nature of abnormalities in early stages makes mammogram analysis a cumbersome task. A computer aided diagnosis (CAD) system can complement subjective diagnosis of physicians with its objective assessment. Mass detection is the most important task in breast cancer diagnosis, as masses are the prominent indicators of the disease. Nevertheless, it is the most challenging task due to the ambiguity between masses and the surrounding normal tissues, especially in dense breasts. Though CAD systems are effective in detecting masses with high sensitivity, the price paid is usually high false positive rates (FPR). Texture analysis is normally employed to reduce the FPR in mass detection, where texture features extracted from suspicious regions are used to build a classifier model to discriminate between actual masses and false positives. Deep learning (DL) is a data-driven model that is gaining increased importance in diverse fields, including medical diagnosis, that involve voluminous amounts of data. In particular, convolutional neural network (CNN) plays an important role in image analysis in various applications, including mammogram analysis. Converting raw images to texture maps can enhance the performance of CNN for false positive reduction. In this work, textural image maps based on Hilbert curve, forest fire model, Radon transform, discrete wavelet transform (DWT) and curvelet transform are analysed using CNN. More specifically, an ensemble of CNNs based on these individual textural image representations is constructed. The proposed work is validated on CBIS-DDSM, a publicly available benchmark dataset, demonstrating 100% accuracy for mass detection with 0% FPR.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1742-6596/2318/1/012038
- OA Status
- diamond
- Cited By
- 1
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297819364
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297819364Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2318/1/012038Digital Object Identifier
- Title
-
Deep ensemble of texture maps for false positive reduction in mammogramsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-01Full publication date if available
- Authors
-
N Srinivashini, M Raveenthini, R LavanyaList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2318/1/012038Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2318/1/012038Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, False positive paradox, Pattern recognition (psychology), Convolutional neural network, Mammography, Deep learning, Breast cancer, Cancer, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297819364 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| ids.doi | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| ids.openalex | https://openalex.org/W4297819364 |
| fwci | 0.19579882 |
| type | article |
| title | Deep ensemble of texture maps for false positive reduction in mammograms |
| biblio.issue | 1 |
| biblio.volume | 2318 |
| biblio.last_page | 012038 |
| biblio.first_page | 012038 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T12994 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Infrared Thermography in Medicine |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7667825818061829 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6481491327285767 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C64869954 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6375935673713684 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[2].display_name | False positive paradox |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6269785761833191 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5723598599433899 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C2780472235 |
| concepts[5].level | 4 |
| concepts[5].score | 0.48945534229278564 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[5].display_name | Mammography |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44483843445777893 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C530470458 |
| concepts[7].level | 3 |
| concepts[7].score | 0.2906540036201477 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[7].display_name | Breast cancer |
| concepts[8].id | https://openalex.org/C121608353 |
| concepts[8].level | 2 |
| concepts[8].score | 0.17936375737190247 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[8].display_name | Cancer |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15916213393211365 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7667825818061829 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6481491327285767 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[2].score | 0.6375935673713684 |
| keywords[2].display_name | False positive paradox |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6269785761833191 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5723598599433899 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/mammography |
| keywords[5].score | 0.48945534229278564 |
| keywords[5].display_name | Mammography |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.44483843445777893 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/breast-cancer |
| keywords[7].score | 0.2906540036201477 |
| keywords[7].display_name | Breast cancer |
| keywords[8].id | https://openalex.org/keywords/cancer |
| keywords[8].score | 0.17936375737190247 |
| keywords[8].display_name | Cancer |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.15916213393211365 |
| keywords[9].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2318/1/012038 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027314625 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | N Srinivashini |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I81556334 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| authorships[0].institutions[0].id | https://openalex.org/I81556334 |
| authorships[0].institutions[0].ror | https://ror.org/03am10p12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I81556334 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Amrita Vishwa Vidyapeetham |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N Srinivashini |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| authorships[1].author.id | https://openalex.org/A5087278141 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M Raveenthini |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I81556334 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| authorships[1].institutions[0].id | https://openalex.org/I81556334 |
| authorships[1].institutions[0].ror | https://ror.org/03am10p12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I81556334 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Amrita Vishwa Vidyapeetham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M Raveenthini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| authorships[2].author.id | https://openalex.org/A5108311948 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | R Lavanya |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I81556334 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| authorships[2].institutions[0].id | https://openalex.org/I81556334 |
| authorships[2].institutions[0].ror | https://ror.org/03am10p12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I81556334 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Amrita Vishwa Vidyapeetham |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | R Lavanya |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore Amrita Vishwa Vidhyapeetham, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep ensemble of texture maps for false positive reduction in mammograms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4312417841, https://openalex.org/W4321369474, https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W4200173597, https://openalex.org/W3116150086, https://openalex.org/W2999805992, https://openalex.org/W4291897433, https://openalex.org/W3011074480, https://openalex.org/W3192840557 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2318/1/012038 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| primary_location.id | doi:10.1088/1742-6596/2318/1/012038 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | https://doi.org/10.1088/1742-6596/2318/1/012038 |
| publication_date | 2022-08-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3177112808, https://openalex.org/W6802747530, https://openalex.org/W3119819877, https://openalex.org/W6761873024, https://openalex.org/W6760194740, https://openalex.org/W2795244616, https://openalex.org/W6755029233, https://openalex.org/W2070644180, https://openalex.org/W1822639386, https://openalex.org/W6642554734, https://openalex.org/W6689996380, https://openalex.org/W6748982644, https://openalex.org/W6784236782, https://openalex.org/W3183844289, https://openalex.org/W2942232960, https://openalex.org/W1969328520, https://openalex.org/W3209108200, https://openalex.org/W3091497115, https://openalex.org/W2240965754, https://openalex.org/W2921028936, https://openalex.org/W2791556415, https://openalex.org/W2893032930 |
| referenced_works_count | 22 |
| abstract_inverted_index.A | 41 |
| abstract_inverted_index.a | 5, 38, 143, 158, 261 |
| abstract_inverted_index.0% | 273 |
| abstract_inverted_index.In | 178, 213 |
| abstract_inverted_index.an | 185, 241 |
| abstract_inverted_index.as | 68 |
| abstract_inverted_index.in | 23, 32, 64, 96, 104, 129, 166, 188, 191 |
| abstract_inverted_index.is | 4, 59, 79, 113, 122, 157, 162, 252, 257 |
| abstract_inverted_index.it | 78 |
| abstract_inverted_index.of | 30, 51, 74, 176, 207, 243 |
| abstract_inverted_index.on | 220, 246, 259 |
| abstract_inverted_index.to | 9, 85, 125, 141, 146, 200 |
| abstract_inverted_index.CAD | 100 |
| abstract_inverted_index.CNN | 208 |
| abstract_inverted_index.FPR | 128 |
| abstract_inverted_index.The | 254 |
| abstract_inverted_index.and | 90, 151, 232 |
| abstract_inverted_index.are | 16, 70, 102, 139, 235 |
| abstract_inverted_index.can | 47, 203 |
| abstract_inverted_index.due | 84 |
| abstract_inverted_index.for | 19, 209, 269 |
| abstract_inverted_index.its | 54 |
| abstract_inverted_index.raw | 198 |
| abstract_inverted_index.the | 27, 60, 71, 75, 80, 86, 91, 110, 127, 205 |
| abstract_inverted_index.(DL) | 156 |
| abstract_inverted_index.100% | 267 |
| abstract_inverted_index.CNN. | 238 |
| abstract_inverted_index.CNNs | 244 |
| abstract_inverted_index.Deep | 154 |
| abstract_inverted_index.FPR. | 274 |
| abstract_inverted_index.Mass | 57 |
| abstract_inverted_index.More | 239 |
| abstract_inverted_index.fire | 224 |
| abstract_inverted_index.from | 136 |
| abstract_inverted_index.high | 108, 115 |
| abstract_inverted_index.maps | 202, 218 |
| abstract_inverted_index.mass | 130, 270 |
| abstract_inverted_index.most | 61, 81 |
| abstract_inverted_index.paid | 112 |
| abstract_inverted_index.role | 187 |
| abstract_inverted_index.task | 63, 83 |
| abstract_inverted_index.that | 161, 172 |
| abstract_inverted_index.this | 214 |
| abstract_inverted_index.used | 18, 140 |
| abstract_inverted_index.with | 53, 107, 272 |
| abstract_inverted_index.work | 256 |
| abstract_inverted_index.(CAD) | 45 |
| abstract_inverted_index.(CNN) | 183 |
| abstract_inverted_index.(DWT) | 231 |
| abstract_inverted_index.Radon | 226 |
| abstract_inverted_index.aided | 43 |
| abstract_inverted_index.among | 13 |
| abstract_inverted_index.based | 219, 245 |
| abstract_inverted_index.build | 142 |
| abstract_inverted_index.data. | 177 |
| abstract_inverted_index.dense | 97 |
| abstract_inverted_index.early | 33 |
| abstract_inverted_index.false | 116, 152, 210 |
| abstract_inverted_index.image | 189, 217, 250 |
| abstract_inverted_index.makes | 35 |
| abstract_inverted_index.model | 145, 160 |
| abstract_inverted_index.plays | 184 |
| abstract_inverted_index.price | 111 |
| abstract_inverted_index.rates | 12, 118 |
| abstract_inverted_index.task. | 40 |
| abstract_inverted_index.these | 247 |
| abstract_inverted_index.using | 237 |
| abstract_inverted_index.where | 132 |
| abstract_inverted_index.work, | 215 |
| abstract_inverted_index.(FPR). | 119 |
| abstract_inverted_index.Though | 99 |
| abstract_inverted_index.actual | 149 |
| abstract_inverted_index.breast | 2, 21, 65 |
| abstract_inverted_index.cancer | 3, 22, 66 |
| abstract_inverted_index.curve, | 222 |
| abstract_inverted_index.forest | 223 |
| abstract_inverted_index.images | 199 |
| abstract_inverted_index.masses | 69, 89, 106, 150 |
| abstract_inverted_index.model, | 225 |
| abstract_inverted_index.nature | 29 |
| abstract_inverted_index.neural | 181 |
| abstract_inverted_index.normal | 93 |
| abstract_inverted_index.reduce | 126 |
| abstract_inverted_index.stages | 34 |
| abstract_inverted_index.subtle | 28 |
| abstract_inverted_index.system | 46 |
| abstract_inverted_index.women. | 14 |
| abstract_inverted_index.Hilbert | 221 |
| abstract_inverted_index.Texture | 120 |
| abstract_inverted_index.amounts | 175 |
| abstract_inverted_index.between | 88, 148 |
| abstract_inverted_index.disease | 7 |
| abstract_inverted_index.diverse | 167 |
| abstract_inverted_index.enhance | 204 |
| abstract_inverted_index.fields, | 168 |
| abstract_inverted_index.gaining | 163 |
| abstract_inverted_index.involve | 173 |
| abstract_inverted_index.medical | 170 |
| abstract_inverted_index.network | 182 |
| abstract_inverted_index.regions | 138 |
| abstract_inverted_index.stages. | 25 |
| abstract_inverted_index.systems | 101 |
| abstract_inverted_index.texture | 133, 201 |
| abstract_inverted_index.usually | 114 |
| abstract_inverted_index.various | 192 |
| abstract_inverted_index.wavelet | 229 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.accuracy | 268 |
| abstract_inverted_index.analysed | 236 |
| abstract_inverted_index.analysis | 37, 121, 190 |
| abstract_inverted_index.breasts. | 98 |
| abstract_inverted_index.commonly | 17 |
| abstract_inverted_index.computer | 42 |
| abstract_inverted_index.curvelet | 233 |
| abstract_inverted_index.dataset, | 265 |
| abstract_inverted_index.discrete | 228 |
| abstract_inverted_index.disease. | 76 |
| abstract_inverted_index.employed | 124 |
| abstract_inverted_index.ensemble | 242 |
| abstract_inverted_index.features | 134 |
| abstract_inverted_index.learning | 155 |
| abstract_inverted_index.normally | 123 |
| abstract_inverted_index.positive | 117, 211 |
| abstract_inverted_index.proposed | 255 |
| abstract_inverted_index.publicly | 262 |
| abstract_inverted_index.textural | 216, 249 |
| abstract_inverted_index.tissues, | 94 |
| abstract_inverted_index.ambiguity | 87 |
| abstract_inverted_index.analysis. | 196 |
| abstract_inverted_index.available | 263 |
| abstract_inverted_index.benchmark | 264 |
| abstract_inverted_index.detecting | 105 |
| abstract_inverted_index.detection | 58, 271 |
| abstract_inverted_index.diagnosis | 44, 50 |
| abstract_inverted_index.effective | 103 |
| abstract_inverted_index.extracted | 135 |
| abstract_inverted_index.important | 62, 186 |
| abstract_inverted_index.including | 169, 194 |
| abstract_inverted_index.increased | 10, 164 |
| abstract_inverted_index.mammogram | 36, 195 |
| abstract_inverted_index.mortality | 11 |
| abstract_inverted_index.objective | 55 |
| abstract_inverted_index.prominent | 72 |
| abstract_inverted_index.screening | 20 |
| abstract_inverted_index.transform | 230, 234 |
| abstract_inverted_index.validated | 258 |
| abstract_inverted_index.CBIS-DDSM, | 260 |
| abstract_inverted_index.Converting | 197 |
| abstract_inverted_index.Mammograms | 15 |
| abstract_inverted_index.Worldwide, | 1 |
| abstract_inverted_index.classifier | 144 |
| abstract_inverted_index.complement | 48 |
| abstract_inverted_index.cumbersome | 39 |
| abstract_inverted_index.detection, | 131 |
| abstract_inverted_index.diagnosis, | 67, 171 |
| abstract_inverted_index.especially | 95 |
| abstract_inverted_index.importance | 165 |
| abstract_inverted_index.indicators | 73 |
| abstract_inverted_index.individual | 248 |
| abstract_inverted_index.physicians | 52 |
| abstract_inverted_index.positives. | 153 |
| abstract_inverted_index.reduction. | 212 |
| abstract_inverted_index.subjective | 49 |
| abstract_inverted_index.suspicious | 137 |
| abstract_inverted_index.transform, | 227 |
| abstract_inverted_index.voluminous | 174 |
| abstract_inverted_index.assessment. | 56 |
| abstract_inverted_index.attributing | 8 |
| abstract_inverted_index.challenging | 82 |
| abstract_inverted_index.data-driven | 159 |
| abstract_inverted_index.particular, | 179 |
| abstract_inverted_index.performance | 206 |
| abstract_inverted_index.surrounding | 92 |
| abstract_inverted_index.asymptomatic | 24 |
| abstract_inverted_index.constructed. | 253 |
| abstract_inverted_index.discriminate | 147 |
| abstract_inverted_index.sensitivity, | 109 |
| abstract_inverted_index.Nevertheless, | 77 |
| abstract_inverted_index.abnormalities | 31 |
| abstract_inverted_index.applications, | 193 |
| abstract_inverted_index.convolutional | 180 |
| abstract_inverted_index.demonstrating | 266 |
| abstract_inverted_index.specifically, | 240 |
| abstract_inverted_index.representations | 251 |
| abstract_inverted_index.life-threatening | 6 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5027314625, https://openalex.org/A5108311948 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I81556334 |
| citation_normalized_percentile.value | 0.54296413 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |