Deep Kernel Aalen-Johansen Estimator: An Interpretable and Flexible Neural Net Framework for Competing Risks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.08063
We propose an interpretable deep competing risks model called the Deep Kernel Aalen-Johansen (DKAJ) estimator, which generalizes the classical Aalen-Johansen nonparametric estimate of cumulative incidence functions (CIFs). Each data point (e.g., patient) is represented as a weighted combination of clusters. If a data point has nonzero weight only for one cluster, then its predicted CIFs correspond to those of the classical Aalen-Johansen estimator restricted to data points from that cluster. These weights come from an automatically learned kernel function that measures how similar any two data points are. On four standard competing risks datasets, we show that DKAJ is competitive with state-of-the-art baselines while being able to provide visualizations to assist model interpretation.
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.48550/arxiv.2512.08063
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7114772112
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114772112Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.08063Digital Object Identifier
- Title
-
Deep Kernel Aalen-Johansen Estimator: An Interpretable and Flexible Neural Net Framework for Competing RisksWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Shen, Xiaobin, Chen, George H.List of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2512.08063Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2512.08063Direct OA link when available
- Concepts
-
Nonparametric statistics, Kernel (algebra), Estimator, Computer science, Artificial intelligence, Function (biology), Artificial neural network, Kernel method, Deep neural networks, Data point, Point (geometry), Mathematics, Kernel density estimation, Data mining, Machine learning, Point process, Variable kernel density estimation, Algorithm, Score, Net (polyhedron), Kernel smoother, Point estimation, Real world data, Data modeling, Pattern recognition (psychology), Weight function, Interpretability, Support vector machineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114772112 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.08063 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.08063 |
| ids.openalex | https://openalex.org/W7114772112 |
| fwci | |
| type | preprint |
| title | Deep Kernel Aalen-Johansen Estimator: An Interpretable and Flexible Neural Net Framework for Competing Risks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C102366305 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6214284896850586 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[0].display_name | Nonparametric statistics |
| concepts[1].id | https://openalex.org/C74193536 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5967957377433777 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[1].display_name | Kernel (algebra) |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5315403938293457 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5279924869537354 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5189340114593506 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C14036430 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4570796489715576 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[5].display_name | Function (biology) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4518730044364929 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C122280245 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43434739112854004 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[7].display_name | Kernel method |
| concepts[8].id | https://openalex.org/C2984842247 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42614078521728516 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep neural networks |
| concepts[9].id | https://openalex.org/C21080849 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4245102107524872 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q13611879 |
| concepts[9].display_name | Data point |
| concepts[10].id | https://openalex.org/C28719098 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4155087172985077 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[10].display_name | Point (geometry) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3918135166168213 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C71134354 |
| concepts[12].level | 3 |
| concepts[12].score | 0.378894180059433 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[12].display_name | Kernel density estimation |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.37885329127311707 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.35837283730506897 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C88871306 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3361022174358368 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208287 |
| concepts[15].display_name | Point process |
| concepts[16].id | https://openalex.org/C195699287 |
| concepts[16].level | 4 |
| concepts[16].score | 0.33451491594314575 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7915722 |
| concepts[16].display_name | Variable kernel density estimation |
| concepts[17].id | https://openalex.org/C11413529 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2909550964832306 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[17].display_name | Algorithm |
| concepts[18].id | https://openalex.org/C65660741 |
| concepts[18].level | 2 |
| concepts[18].score | 0.27071964740753174 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3952743 |
| concepts[18].display_name | Score |
| concepts[19].id | https://openalex.org/C14166107 |
| concepts[19].level | 2 |
| concepts[19].score | 0.2689609229564667 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[19].display_name | Net (polyhedron) |
| concepts[20].id | https://openalex.org/C27406209 |
| concepts[20].level | 5 |
| concepts[20].score | 0.2632625997066498 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q6394203 |
| concepts[20].display_name | Kernel smoother |
| concepts[21].id | https://openalex.org/C41426520 |
| concepts[21].level | 2 |
| concepts[21].score | 0.26087480783462524 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1192065 |
| concepts[21].display_name | Point estimation |
| concepts[22].id | https://openalex.org/C3020493868 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2602803409099579 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q55631277 |
| concepts[22].display_name | Real world data |
| concepts[23].id | https://openalex.org/C67186912 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2566421627998352 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[23].display_name | Data modeling |
| concepts[24].id | https://openalex.org/C153180895 |
| concepts[24].level | 2 |
| concepts[24].score | 0.25541725754737854 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[24].display_name | Pattern recognition (psychology) |
| concepts[25].id | https://openalex.org/C134466208 |
| concepts[25].level | 2 |
| concepts[25].score | 0.25437161326408386 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1520657 |
| concepts[25].display_name | Weight function |
| concepts[26].id | https://openalex.org/C2781067378 |
| concepts[26].level | 2 |
| concepts[26].score | 0.2515038549900055 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[26].display_name | Interpretability |
| concepts[27].id | https://openalex.org/C12267149 |
| concepts[27].level | 2 |
| concepts[27].score | 0.25030845403671265 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[27].display_name | Support vector machine |
| keywords[0].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[0].score | 0.6214284896850586 |
| keywords[0].display_name | Nonparametric statistics |
| keywords[1].id | https://openalex.org/keywords/kernel |
| keywords[1].score | 0.5967957377433777 |
| keywords[1].display_name | Kernel (algebra) |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.5315403938293457 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/function |
| keywords[3].score | 0.4570796489715576 |
| keywords[3].display_name | Function (biology) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.4518730044364929 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/kernel-method |
| keywords[5].score | 0.43434739112854004 |
| keywords[5].display_name | Kernel method |
| keywords[6].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[6].score | 0.42614078521728516 |
| keywords[6].display_name | Deep neural networks |
| keywords[7].id | https://openalex.org/keywords/data-point |
| keywords[7].score | 0.4245102107524872 |
| keywords[7].display_name | Data point |
| keywords[8].id | https://openalex.org/keywords/point |
| keywords[8].score | 0.4155087172985077 |
| keywords[8].display_name | Point (geometry) |
| language | |
| locations[0].id | doi:10.48550/arxiv.2512.08063 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2512.08063 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shen, Xiaobin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shen, Xiaobin |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chen, George H. |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Chen, George H. |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2512.08063 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Deep Kernel Aalen-Johansen Estimator: An Interpretable and Flexible Neural Net Framework for Competing Risks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T23:13:37.075516 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2512.08063 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.08063 |
| primary_location.id | doi:10.48550/arxiv.2512.08063 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2512.08063 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 41 |
| abstract_inverted_index.If | 40 |
| abstract_inverted_index.On | 88 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 2, 74 |
| abstract_inverted_index.as | 34 |
| abstract_inverted_index.is | 32, 98 |
| abstract_inverted_index.of | 22, 38, 58 |
| abstract_inverted_index.to | 56, 64, 106, 109 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.any | 83 |
| abstract_inverted_index.for | 48 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.how | 81 |
| abstract_inverted_index.its | 52 |
| abstract_inverted_index.one | 49 |
| abstract_inverted_index.the | 9, 17, 59 |
| abstract_inverted_index.two | 84 |
| abstract_inverted_index.CIFs | 54 |
| abstract_inverted_index.DKAJ | 97 |
| abstract_inverted_index.Deep | 10 |
| abstract_inverted_index.Each | 27 |
| abstract_inverted_index.able | 105 |
| abstract_inverted_index.are. | 87 |
| abstract_inverted_index.come | 72 |
| abstract_inverted_index.data | 28, 42, 65, 85 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.four | 89 |
| abstract_inverted_index.from | 67, 73 |
| abstract_inverted_index.only | 47 |
| abstract_inverted_index.show | 95 |
| abstract_inverted_index.that | 68, 79, 96 |
| abstract_inverted_index.then | 51 |
| abstract_inverted_index.with | 100 |
| abstract_inverted_index.These | 70 |
| abstract_inverted_index.being | 104 |
| abstract_inverted_index.model | 7, 111 |
| abstract_inverted_index.point | 29, 43 |
| abstract_inverted_index.risks | 6, 92 |
| abstract_inverted_index.those | 57 |
| abstract_inverted_index.which | 15 |
| abstract_inverted_index.while | 103 |
| abstract_inverted_index.(DKAJ) | 13 |
| abstract_inverted_index.(e.g., | 30 |
| abstract_inverted_index.Kernel | 11 |
| abstract_inverted_index.assist | 110 |
| abstract_inverted_index.called | 8 |
| abstract_inverted_index.kernel | 77 |
| abstract_inverted_index.points | 66, 86 |
| abstract_inverted_index.weight | 46 |
| abstract_inverted_index.(CIFs). | 26 |
| abstract_inverted_index.learned | 76 |
| abstract_inverted_index.nonzero | 45 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.provide | 107 |
| abstract_inverted_index.similar | 82 |
| abstract_inverted_index.weights | 71 |
| abstract_inverted_index.cluster, | 50 |
| abstract_inverted_index.cluster. | 69 |
| abstract_inverted_index.estimate | 21 |
| abstract_inverted_index.function | 78 |
| abstract_inverted_index.measures | 80 |
| abstract_inverted_index.patient) | 31 |
| abstract_inverted_index.standard | 90 |
| abstract_inverted_index.weighted | 36 |
| abstract_inverted_index.baselines | 102 |
| abstract_inverted_index.classical | 18, 60 |
| abstract_inverted_index.clusters. | 39 |
| abstract_inverted_index.competing | 5, 91 |
| abstract_inverted_index.datasets, | 93 |
| abstract_inverted_index.estimator | 62 |
| abstract_inverted_index.functions | 25 |
| abstract_inverted_index.incidence | 24 |
| abstract_inverted_index.predicted | 53 |
| abstract_inverted_index.correspond | 55 |
| abstract_inverted_index.cumulative | 23 |
| abstract_inverted_index.estimator, | 14 |
| abstract_inverted_index.restricted | 63 |
| abstract_inverted_index.combination | 37 |
| abstract_inverted_index.competitive | 99 |
| abstract_inverted_index.generalizes | 16 |
| abstract_inverted_index.represented | 33 |
| abstract_inverted_index.automatically | 75 |
| abstract_inverted_index.interpretable | 3 |
| abstract_inverted_index.nonparametric | 20 |
| abstract_inverted_index.Aalen-Johansen | 12, 19, 61 |
| abstract_inverted_index.visualizations | 108 |
| abstract_inverted_index.interpretation. | 112 |
| abstract_inverted_index.state-of-the-art | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |