Deep Koopman learning of nonlinear time-varying systems Article Swipe
Wenjian Hao
,
Bowen Huang
,
Wei Pan
,
Di Wu
,
Shaoshuai Mou
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.automatica.2023.111372
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.automatica.2023.111372
Related Topics
Concepts
Nonlinear system
Artificial neural network
Control theory (sociology)
Computer science
Deep learning
Operator (biology)
Approximation error
Linear approximation
Nonlinear dynamical systems
Applied mathematics
Mathematics
Algorithm
Artificial intelligence
Physics
Control (management)
Chemistry
Repressor
Transcription factor
Gene
Quantum mechanics
Biochemistry
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.automatica.2023.111372
- OA Status
- green
- Cited By
- 13
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387853540
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387853540Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.automatica.2023.111372Digital Object Identifier
- Title
-
Deep Koopman learning of nonlinear time-varying systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-21Full publication date if available
- Authors
-
Wenjian Hao, Bowen Huang, Wei Pan, Di Wu, Shaoshuai MouList of authors in order
- Landing page
-
https://doi.org/10.1016/j.automatica.2023.111372Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/2293484Direct OA link when available
- Concepts
-
Nonlinear system, Artificial neural network, Control theory (sociology), Computer science, Deep learning, Operator (biology), Approximation error, Linear approximation, Nonlinear dynamical systems, Applied mathematics, Mathematics, Algorithm, Artificial intelligence, Physics, Control (management), Chemistry, Repressor, Transcription factor, Gene, Quantum mechanics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387853540 |
|---|---|
| doi | https://doi.org/10.1016/j.automatica.2023.111372 |
| ids.doi | https://doi.org/10.1016/j.automatica.2023.111372 |
| ids.openalex | https://openalex.org/W4387853540 |
| fwci | 2.80377728 |
| type | article |
| title | Deep Koopman learning of nonlinear time-varying systems |
| biblio.issue | |
| biblio.volume | 159 |
| biblio.last_page | 111372 |
| biblio.first_page | 111372 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9894000291824341 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T10305 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9772999882698059 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Power System Optimization and Stability |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158622935 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7418037056922913 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[0].display_name | Nonlinear system |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6535806655883789 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C47446073 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5998489260673523 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[2].display_name | Control theory (sociology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5800365805625916 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4979267120361328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C17020691 |
| concepts[5].level | 5 |
| concepts[5].score | 0.48552489280700684 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[5].display_name | Operator (biology) |
| concepts[6].id | https://openalex.org/C122383733 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4278002977371216 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q865920 |
| concepts[6].display_name | Approximation error |
| concepts[7].id | https://openalex.org/C160824197 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4209184944629669 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2071054 |
| concepts[7].display_name | Linear approximation |
| concepts[8].id | https://openalex.org/C2983030100 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4128061532974243 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q638328 |
| concepts[8].display_name | Nonlinear dynamical systems |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3398344814777374 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.31745004653930664 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30764782428741455 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.29336634278297424 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09660902619361877 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C2775924081 |
| concepts[14].level | 2 |
| concepts[14].score | 0.09233322739601135 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[14].display_name | Control (management) |
| concepts[15].id | https://openalex.org/C185592680 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[15].display_name | Chemistry |
| concepts[16].id | https://openalex.org/C158448853 |
| concepts[16].level | 4 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[16].display_name | Repressor |
| concepts[17].id | https://openalex.org/C86339819 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[17].display_name | Transcription factor |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/nonlinear-system |
| keywords[0].score | 0.7418037056922913 |
| keywords[0].display_name | Nonlinear system |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6535806655883789 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/control-theory |
| keywords[2].score | 0.5998489260673523 |
| keywords[2].display_name | Control theory (sociology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5800365805625916 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4979267120361328 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/operator |
| keywords[5].score | 0.48552489280700684 |
| keywords[5].display_name | Operator (biology) |
| keywords[6].id | https://openalex.org/keywords/approximation-error |
| keywords[6].score | 0.4278002977371216 |
| keywords[6].display_name | Approximation error |
| keywords[7].id | https://openalex.org/keywords/linear-approximation |
| keywords[7].score | 0.4209184944629669 |
| keywords[7].display_name | Linear approximation |
| keywords[8].id | https://openalex.org/keywords/nonlinear-dynamical-systems |
| keywords[8].score | 0.4128061532974243 |
| keywords[8].display_name | Nonlinear dynamical systems |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.3398344814777374 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.31745004653930664 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.30764782428741455 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.29336634278297424 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.09660902619361877 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/control |
| keywords[14].score | 0.09233322739601135 |
| keywords[14].display_name | Control (management) |
| language | en |
| locations[0].id | doi:10.1016/j.automatica.2023.111372 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S51360982 |
| locations[0].source.issn | 0005-1098, 1873-2836 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0005-1098 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Automatica |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Automatica |
| locations[0].landing_page_url | https://doi.org/10.1016/j.automatica.2023.111372 |
| locations[1].id | pmh:oai:osti.gov:2293484 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/2293484 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030939982 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenjian Hao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Aeronautics and Astronautics, Purdue University, West Lafayette, USA |
| authorships[0].institutions[0].id | https://openalex.org/I219193219 |
| authorships[0].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Purdue University West Lafayette |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjian Hao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Aeronautics and Astronautics, Purdue University, West Lafayette, USA |
| authorships[1].author.id | https://openalex.org/A5103278668 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2339-1123 |
| authorships[1].author.display_name | Bowen Huang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[1].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratory, Richland, USA |
| authorships[1].institutions[0].id | https://openalex.org/I142606810 |
| authorships[1].institutions[0].ror | https://ror.org/05h992307 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bowen Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Pacific Northwest National Laboratory, Richland, USA |
| authorships[2].author.id | https://openalex.org/A5100721259 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1121-9879 |
| authorships[2].author.display_name | Wei Pan |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28407311 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Manchester, UK |
| authorships[2].institutions[0].id | https://openalex.org/I28407311 |
| authorships[2].institutions[0].ror | https://ror.org/027m9bs27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I28407311 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Manchester |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei Pan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, University of Manchester, UK |
| authorships[3].author.id | https://openalex.org/A5100599890 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4753-8161 |
| authorships[3].author.display_name | Di Wu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[3].affiliations[0].raw_affiliation_string | Pacific Northwest National Laboratory, Richland, USA |
| authorships[3].institutions[0].id | https://openalex.org/I142606810 |
| authorships[3].institutions[0].ror | https://ror.org/05h992307 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Di Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pacific Northwest National Laboratory, Richland, USA |
| authorships[4].author.id | https://openalex.org/A5070733769 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3698-4238 |
| authorships[4].author.display_name | Shaoshuai Mou |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Aeronautics and Astronautics, Purdue University, West Lafayette, USA |
| authorships[4].institutions[0].id | https://openalex.org/I219193219 |
| authorships[4].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Purdue University West Lafayette |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shaoshuai Mou |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | School of Aeronautics and Astronautics, Purdue University, West Lafayette, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/2293484 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Koopman learning of nonlinear time-varying systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2046314839, https://openalex.org/W2037008369, https://openalex.org/W3125388252, https://openalex.org/W652901797, https://openalex.org/W2083813704, https://openalex.org/W2093585199, https://openalex.org/W4311227613, https://openalex.org/W2087686193, https://openalex.org/W2068084037, https://openalex.org/W4282839256 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:2293484 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/2293484 |
| primary_location.id | doi:10.1016/j.automatica.2023.111372 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S51360982 |
| primary_location.source.issn | 0005-1098, 1873-2836 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0005-1098 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Automatica |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Automatica |
| primary_location.landing_page_url | https://doi.org/10.1016/j.automatica.2023.111372 |
| publication_date | 2023-10-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6784603026, https://openalex.org/W2965243272, https://openalex.org/W3081754649, https://openalex.org/W3158127689, https://openalex.org/W3216784117, https://openalex.org/W6772521232, https://openalex.org/W2561027863, https://openalex.org/W2594932112, https://openalex.org/W6744093133, https://openalex.org/W2777417212, https://openalex.org/W3126673178, https://openalex.org/W6713784851, https://openalex.org/W2289725842, https://openalex.org/W2964119648, https://openalex.org/W1998167411, https://openalex.org/W1591018827, https://openalex.org/W6743094116, https://openalex.org/W6792599436, https://openalex.org/W2963006871, https://openalex.org/W3098172061, https://openalex.org/W3100184721, https://openalex.org/W2184811773, https://openalex.org/W1522301498, https://openalex.org/W4200635133, https://openalex.org/W1998441499, https://openalex.org/W3101071828, https://openalex.org/W2751084925 |
| referenced_works_count | 27 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5070733769 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I219193219 |
| citation_normalized_percentile.value | 0.89785178 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |