Deep Koopman Learning using Noisy Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.16649
This paper proposes a data-driven framework to learn a finite-dimensional approximation of a Koopman operator for approximating the state evolution of a dynamical system under noisy observations. To this end, our proposed solution has two main advantages. First, the proposed method only requires the measurement noise to be bounded. Second, the proposed method modifies the existing deep Koopman operator formulations by characterizing the effect of the measurement noise on the Koopman operator learning and then mitigating it by updating the tunable parameter of the observable functions of the Koopman operator, making it easy to implement. The performance of the proposed method is demonstrated on several standard benchmarks. We then compare the presented method with similar methods proposed in the latest literature on Koopman learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.16649
- https://arxiv.org/pdf/2405.16649
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399115865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399115865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.16649Digital Object Identifier
- Title
-
Deep Koopman Learning using Noisy DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-26Full publication date if available
- Authors
-
Wenjian Hao, Devesh Upadhyay, Shaoshuai MouList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.16649Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.16649Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.16649Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Computer science, Econometrics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399115865 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.16649 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.16649 |
| ids.openalex | https://openalex.org/W4399115865 |
| fwci | |
| type | preprint |
| title | Deep Koopman Learning using Noisy Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7361999750137329 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.7361999750137329 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.6388999819755554 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5465880632400513 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5458056330680847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5233439803123474 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C149782125 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3409520089626312 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[3].display_name | Econometrics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2355794906616211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.5465880632400513 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5458056330680847 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5233439803123474 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/econometrics |
| keywords[3].score | 0.3409520089626312 |
| keywords[3].display_name | Econometrics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.2355794906616211 |
| keywords[4].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.16649 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.16649 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.16649 |
| locations[1].id | doi:10.48550/arxiv.2405.16649 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.16649 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030939982 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenjian Hao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao, Wenjian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005728773 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2399-1850 |
| authorships[1].author.display_name | Devesh Upadhyay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Upadhyay, Devesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070733769 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3698-4238 |
| authorships[2].author.display_name | Shaoshuai Mou |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mou, Shaoshuai |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.16649 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Koopman Learning using Noisy Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7361999750137329 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W4323565446 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.16649 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.16649 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.16649 |
| primary_location.id | pmh:oai:arXiv.org:2405.16649 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.16649 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.16649 |
| publication_date | 2024-05-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 8, 12, 21 |
| abstract_inverted_index.To | 27 |
| abstract_inverted_index.We | 107 |
| abstract_inverted_index.be | 47 |
| abstract_inverted_index.by | 60, 77 |
| abstract_inverted_index.in | 117 |
| abstract_inverted_index.is | 101 |
| abstract_inverted_index.it | 76, 91 |
| abstract_inverted_index.of | 11, 20, 64, 82, 86, 97 |
| abstract_inverted_index.on | 68, 103, 121 |
| abstract_inverted_index.to | 6, 46, 93 |
| abstract_inverted_index.The | 95 |
| abstract_inverted_index.and | 73 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.our | 30 |
| abstract_inverted_index.the | 17, 38, 43, 50, 54, 62, 65, 69, 79, 83, 87, 98, 110, 118 |
| abstract_inverted_index.two | 34 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 56 |
| abstract_inverted_index.easy | 92 |
| abstract_inverted_index.end, | 29 |
| abstract_inverted_index.main | 35 |
| abstract_inverted_index.only | 41 |
| abstract_inverted_index.then | 74, 108 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.learn | 7 |
| abstract_inverted_index.noise | 45, 67 |
| abstract_inverted_index.noisy | 25 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.state | 18 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.First, | 37 |
| abstract_inverted_index.effect | 63 |
| abstract_inverted_index.latest | 119 |
| abstract_inverted_index.making | 90 |
| abstract_inverted_index.method | 40, 52, 100, 112 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.Koopman | 13, 57, 70, 88, 122 |
| abstract_inverted_index.Second, | 49 |
| abstract_inverted_index.compare | 109 |
| abstract_inverted_index.methods | 115 |
| abstract_inverted_index.several | 104 |
| abstract_inverted_index.similar | 114 |
| abstract_inverted_index.tunable | 80 |
| abstract_inverted_index.bounded. | 48 |
| abstract_inverted_index.existing | 55 |
| abstract_inverted_index.learning | 72 |
| abstract_inverted_index.modifies | 53 |
| abstract_inverted_index.operator | 14, 58, 71 |
| abstract_inverted_index.proposed | 31, 39, 51, 99, 116 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.requires | 42 |
| abstract_inverted_index.solution | 32 |
| abstract_inverted_index.standard | 105 |
| abstract_inverted_index.updating | 78 |
| abstract_inverted_index.dynamical | 22 |
| abstract_inverted_index.evolution | 19 |
| abstract_inverted_index.framework | 5 |
| abstract_inverted_index.functions | 85 |
| abstract_inverted_index.learning. | 123 |
| abstract_inverted_index.operator, | 89 |
| abstract_inverted_index.parameter | 81 |
| abstract_inverted_index.presented | 111 |
| abstract_inverted_index.implement. | 94 |
| abstract_inverted_index.literature | 120 |
| abstract_inverted_index.mitigating | 75 |
| abstract_inverted_index.observable | 84 |
| abstract_inverted_index.advantages. | 36 |
| abstract_inverted_index.benchmarks. | 106 |
| abstract_inverted_index.data-driven | 4 |
| abstract_inverted_index.measurement | 44, 66 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.demonstrated | 102 |
| abstract_inverted_index.formulations | 59 |
| abstract_inverted_index.approximating | 16 |
| abstract_inverted_index.approximation | 10 |
| abstract_inverted_index.observations. | 26 |
| abstract_inverted_index.characterizing | 61 |
| abstract_inverted_index.finite-dimensional | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |