Deep Learning Algorithms for Autonomous Vehicle Communications: Technical Insights and Open Challenges Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/cpe.70218
Autonomous vehicles (AVs) are one of the building blocks of modern intelligent transportation systems and have the potential to change some aspects related to mobility, safety, and operational efficiency. In this paper, we analyze recent progress in AV algorithms and simulation frameworks, emphasizing their roles in decision‐making processes, trajectory planning, object detection, and traffic optimization strategies. This paper provides technical discussions on the three core research questions: (RQ1) Major methodologies used for decision‐making, trajectory planning, and traffic optimization in AV communications (RQ2) Effectiveness of simulation platforms at closing the gap between algorithm testing and real‐world performance (RQ3) Challenges for the scalability and deployment of AV technologies. This paper collates the results from important individual research articles from scientific databases that present different methodologies including deep learning, reinforcement learning, and rule‐based approaches. The major conclusions pointed out in this regard include increased reliance on deep learning for complex task handling, its good effectiveness in hybrid learning paradigms, and, most importantly, the central role that simulations can play in assessing scalability and safety over a large range of conditions. Still, several challenges do remain, including high computational demands for real‐ time decision‐making, integration of V2X communication, and the gap between simulated and real‐world performance. This paper identifies the emerging trends, highlights the technical limitations, and provides a roadmap for AV development using robust algorithms with realistic simulations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/cpe.70218
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218
- OA Status
- hybrid
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412816080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412816080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/cpe.70218Digital Object Identifier
- Title
-
Deep Learning Algorithms for Autonomous Vehicle Communications: Technical Insights and Open ChallengesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-31Full publication date if available
- Authors
-
Majd Alkorabi, Alireza Souri, Nihat İnançList of authors in order
- Landing page
-
https://doi.org/10.1002/cpe.70218Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Algorithm, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412816080 |
|---|---|
| doi | https://doi.org/10.1002/cpe.70218 |
| ids.doi | https://doi.org/10.1002/cpe.70218 |
| ids.openalex | https://openalex.org/W4412816080 |
| fwci | 2.70577588 |
| type | article |
| title | Deep Learning Algorithms for Autonomous Vehicle Communications: Technical Insights and Open Challenges |
| biblio.issue | 21-22 |
| biblio.volume | 37 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10524 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Traffic control and management |
| topics[2].id | https://openalex.org/T10761 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9993000030517578 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Vehicular Ad Hoc Networks (VANETs) |
| is_xpac | False |
| apc_list.value | 4740 |
| apc_list.currency | USD |
| apc_list.value_usd | 4740 |
| apc_paid.value | 4740 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4740 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8625389337539673 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4531354308128357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3415173292160034 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.34106576442718506 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8625389337539673 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4531354308128357 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.3415173292160034 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.34106576442718506 |
| keywords[3].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1002/cpe.70218 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S11065456 |
| locations[0].source.issn | 1532-0626, 1532-0634 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1532-0626 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Concurrency and Computation Practice and Experience |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Concurrency and Computation: Practice and Experience |
| locations[0].landing_page_url | https://doi.org/10.1002/cpe.70218 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5119148316 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Majd Alkorabi |
| authorships[0].countries | TR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25010766 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Software Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| authorships[0].institutions[0].id | https://openalex.org/I25010766 |
| authorships[0].institutions[0].ror | https://ror.org/022xhck05 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25010766 |
| authorships[0].institutions[0].country_code | TR |
| authorships[0].institutions[0].display_name | Haliç University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Majd Alkorabi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Software Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| authorships[1].author.id | https://openalex.org/A5080921529 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8314-9051 |
| authorships[1].author.display_name | Alireza Souri |
| authorships[1].countries | TR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25010766 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| authorships[1].institutions[0].id | https://openalex.org/I25010766 |
| authorships[1].institutions[0].ror | https://ror.org/022xhck05 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25010766 |
| authorships[1].institutions[0].country_code | TR |
| authorships[1].institutions[0].display_name | Haliç University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alireza Souri |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| authorships[2].author.id | https://openalex.org/A5011179095 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2989-6632 |
| authorships[2].author.display_name | Nihat İnanç |
| authorships[2].countries | TR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25010766 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Electronics Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| authorships[2].institutions[0].id | https://openalex.org/I25010766 |
| authorships[2].institutions[0].ror | https://ror.org/022xhck05 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25010766 |
| authorships[2].institutions[0].country_code | TR |
| authorships[2].institutions[0].display_name | Haliç University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nihat İnanç |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Electronics Engineering, Faculty of Engineering Haliç University Istanbul Turkey |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Algorithms for Autonomous Vehicle Communications: Technical Insights and Open Challenges |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/cpe.70218 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S11065456 |
| best_oa_location.source.issn | 1532-0626, 1532-0634 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1532-0626 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Concurrency and Computation Practice and Experience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| best_oa_location.landing_page_url | https://doi.org/10.1002/cpe.70218 |
| primary_location.id | doi:10.1002/cpe.70218 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S11065456 |
| primary_location.source.issn | 1532-0626, 1532-0634 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1532-0626 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Concurrency and Computation Practice and Experience |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70218 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Concurrency and Computation: Practice and Experience |
| primary_location.landing_page_url | https://doi.org/10.1002/cpe.70218 |
| publication_date | 2025-07-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3113978062, https://openalex.org/W4386995883, https://openalex.org/W4313406716, https://openalex.org/W4407566017, https://openalex.org/W4313680365, https://openalex.org/W4407360844, https://openalex.org/W4378363842, https://openalex.org/W4392124566, https://openalex.org/W4393943989, https://openalex.org/W4365444201, https://openalex.org/W4389245145, https://openalex.org/W4386393127, https://openalex.org/W4283713790, https://openalex.org/W4386219277, https://openalex.org/W4205373550, https://openalex.org/W4309150896, https://openalex.org/W4292787737, https://openalex.org/W3191849616, https://openalex.org/W4391691216, https://openalex.org/W4404436001, https://openalex.org/W4388597187, https://openalex.org/W4312517642, https://openalex.org/W4295878699, https://openalex.org/W4394627628, https://openalex.org/W4312305029, https://openalex.org/W4406141308, https://openalex.org/W2620971809, https://openalex.org/W4386597111, https://openalex.org/W4404294341, https://openalex.org/W4255941890, https://openalex.org/W4403391053 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 173, 215 |
| abstract_inverted_index.AV | 38, 80, 105, 218 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.at | 87 |
| abstract_inverted_index.do | 181 |
| abstract_inverted_index.in | 37, 46, 79, 137, 153, 167 |
| abstract_inverted_index.of | 6, 10, 84, 104, 176, 192 |
| abstract_inverted_index.on | 62, 143 |
| abstract_inverted_index.to | 19, 24 |
| abstract_inverted_index.we | 33 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.V2X | 193 |
| abstract_inverted_index.and | 15, 27, 40, 53, 76, 94, 102, 129, 170, 195, 200, 213 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.can | 165 |
| abstract_inverted_index.for | 72, 99, 146, 187, 217 |
| abstract_inverted_index.gap | 90, 197 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.out | 136 |
| abstract_inverted_index.the | 7, 17, 63, 89, 100, 110, 160, 196, 206, 210 |
| abstract_inverted_index.This | 57, 107, 203 |
| abstract_inverted_index.and, | 157 |
| abstract_inverted_index.core | 65 |
| abstract_inverted_index.deep | 125, 144 |
| abstract_inverted_index.from | 112, 117 |
| abstract_inverted_index.good | 151 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.high | 184 |
| abstract_inverted_index.most | 158 |
| abstract_inverted_index.over | 172 |
| abstract_inverted_index.play | 166 |
| abstract_inverted_index.role | 162 |
| abstract_inverted_index.some | 21 |
| abstract_inverted_index.task | 148 |
| abstract_inverted_index.that | 120, 163 |
| abstract_inverted_index.this | 31, 138 |
| abstract_inverted_index.time | 189 |
| abstract_inverted_index.used | 71 |
| abstract_inverted_index.with | 223 |
| abstract_inverted_index.(AVs) | 3 |
| abstract_inverted_index.(RQ1) | 68 |
| abstract_inverted_index.(RQ2) | 82 |
| abstract_inverted_index.(RQ3) | 97 |
| abstract_inverted_index.Major | 69 |
| abstract_inverted_index.large | 174 |
| abstract_inverted_index.major | 133 |
| abstract_inverted_index.paper | 58, 108, 204 |
| abstract_inverted_index.range | 175 |
| abstract_inverted_index.roles | 45 |
| abstract_inverted_index.their | 44 |
| abstract_inverted_index.three | 64 |
| abstract_inverted_index.using | 220 |
| abstract_inverted_index.Still, | 178 |
| abstract_inverted_index.blocks | 9 |
| abstract_inverted_index.change | 20 |
| abstract_inverted_index.hybrid | 154 |
| abstract_inverted_index.modern | 11 |
| abstract_inverted_index.object | 51 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.recent | 35 |
| abstract_inverted_index.regard | 139 |
| abstract_inverted_index.robust | 221 |
| abstract_inverted_index.safety | 171 |
| abstract_inverted_index.analyze | 34 |
| abstract_inverted_index.aspects | 22 |
| abstract_inverted_index.between | 91, 198 |
| abstract_inverted_index.central | 161 |
| abstract_inverted_index.closing | 88 |
| abstract_inverted_index.complex | 147 |
| abstract_inverted_index.demands | 186 |
| abstract_inverted_index.include | 140 |
| abstract_inverted_index.pointed | 135 |
| abstract_inverted_index.present | 121 |
| abstract_inverted_index.real‐ | 188 |
| abstract_inverted_index.related | 23 |
| abstract_inverted_index.remain, | 182 |
| abstract_inverted_index.results | 111 |
| abstract_inverted_index.roadmap | 216 |
| abstract_inverted_index.safety, | 26 |
| abstract_inverted_index.several | 179 |
| abstract_inverted_index.systems | 14 |
| abstract_inverted_index.testing | 93 |
| abstract_inverted_index.traffic | 54, 77 |
| abstract_inverted_index.trends, | 208 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.articles | 116 |
| abstract_inverted_index.building | 8 |
| abstract_inverted_index.collates | 109 |
| abstract_inverted_index.emerging | 207 |
| abstract_inverted_index.learning | 145, 155 |
| abstract_inverted_index.progress | 36 |
| abstract_inverted_index.provides | 59, 214 |
| abstract_inverted_index.reliance | 142 |
| abstract_inverted_index.research | 66, 115 |
| abstract_inverted_index.vehicles | 2 |
| abstract_inverted_index.algorithm | 92 |
| abstract_inverted_index.assessing | 168 |
| abstract_inverted_index.databases | 119 |
| abstract_inverted_index.different | 122 |
| abstract_inverted_index.handling, | 149 |
| abstract_inverted_index.important | 113 |
| abstract_inverted_index.including | 124, 183 |
| abstract_inverted_index.increased | 141 |
| abstract_inverted_index.learning, | 126, 128 |
| abstract_inverted_index.mobility, | 25 |
| abstract_inverted_index.planning, | 50, 75 |
| abstract_inverted_index.platforms | 86 |
| abstract_inverted_index.potential | 18 |
| abstract_inverted_index.realistic | 224 |
| abstract_inverted_index.simulated | 199 |
| abstract_inverted_index.technical | 60, 211 |
| abstract_inverted_index.Autonomous | 1 |
| abstract_inverted_index.Challenges | 98 |
| abstract_inverted_index.algorithms | 39, 222 |
| abstract_inverted_index.challenges | 180 |
| abstract_inverted_index.deployment | 103 |
| abstract_inverted_index.detection, | 52 |
| abstract_inverted_index.highlights | 209 |
| abstract_inverted_index.identifies | 205 |
| abstract_inverted_index.individual | 114 |
| abstract_inverted_index.paradigms, | 156 |
| abstract_inverted_index.processes, | 48 |
| abstract_inverted_index.questions: | 67 |
| abstract_inverted_index.scientific | 118 |
| abstract_inverted_index.simulation | 41, 85 |
| abstract_inverted_index.trajectory | 49, 74 |
| abstract_inverted_index.approaches. | 131 |
| abstract_inverted_index.conclusions | 134 |
| abstract_inverted_index.conditions. | 177 |
| abstract_inverted_index.development | 219 |
| abstract_inverted_index.discussions | 61 |
| abstract_inverted_index.efficiency. | 29 |
| abstract_inverted_index.emphasizing | 43 |
| abstract_inverted_index.frameworks, | 42 |
| abstract_inverted_index.integration | 191 |
| abstract_inverted_index.intelligent | 12 |
| abstract_inverted_index.operational | 28 |
| abstract_inverted_index.performance | 96 |
| abstract_inverted_index.scalability | 101, 169 |
| abstract_inverted_index.simulations | 164 |
| abstract_inverted_index.strategies. | 56 |
| abstract_inverted_index.importantly, | 159 |
| abstract_inverted_index.limitations, | 212 |
| abstract_inverted_index.optimization | 55, 78 |
| abstract_inverted_index.performance. | 202 |
| abstract_inverted_index.real‐world | 95, 201 |
| abstract_inverted_index.rule‐based | 130 |
| abstract_inverted_index.simulations. | 225 |
| abstract_inverted_index.Effectiveness | 83 |
| abstract_inverted_index.computational | 185 |
| abstract_inverted_index.effectiveness | 152 |
| abstract_inverted_index.methodologies | 70, 123 |
| abstract_inverted_index.reinforcement | 127 |
| abstract_inverted_index.technologies. | 106 |
| abstract_inverted_index.communication, | 194 |
| abstract_inverted_index.communications | 81 |
| abstract_inverted_index.transportation | 13 |
| abstract_inverted_index.decision‐making | 47 |
| abstract_inverted_index.decision‐making, | 73, 190 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5080921529 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I25010766 |
| citation_normalized_percentile.value | 0.84881462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |