Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional Connectivity Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.08431
Brain gender differences have been known for a long time and are the possible reason for many psychological, psychiatric and behavioral differences between males and females. Predicting genders from brain functional connectivity (FC) can build the relationship between brain activities and gender, and extracting important gender related FC features from the prediction model offers a way to investigate the brain gender difference. Current predictive models applied to gender prediction demonstrate good accuracies, but usually extract individual functional connections instead of connectivity patterns in the whole connectivity matrix as features. In addition, current models often omit the effect of the input brain FC scale on prediction and cannot give any model uncertainty information. Hence, in this study we propose to predict gender from multiple scales of brain FC with deep learning, which can extract full FC patterns as features. We further develop the understanding of the feature extraction mechanism in deep neural network (DNN) and propose a DNN feature ranking method to extract the highly important features based on their contributions to the prediction. Moreover, we apply Bayesian deep learning to the brain FC gender prediction, which as a probabilistic model can not only make accurate predictions but also generate model uncertainty for each prediction. Experiments were done on the high-quality Human Connectome Project S1200 release dataset comprising the resting state functional MRI data of 1003 healthy adults. First, DNN reaches 83.0%, 87.6%, 92.0%, 93.5% and 94.1% accuracies respectively with the FC input derived from 25, 50, 100, 200, 300 independent component analysis (ICA) components. DNN outperforms the conventional machine learning methods on the 25-ICA-component scale FC, but the linear machine learning method catches up as the number of ICA components increases...
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.08431
- https://arxiv.org/pdf/2005.08431
- OA Status
- green
- Cited By
- 1
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3025313276
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3025313276Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.08431Digital Object Identifier
- Title
-
Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional ConnectivityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-18Full publication date if available
- Authors
-
Gengyan Zhao, Gyujoon Hwang, Cole J. Cook, Fang Liu, M. Elizabeth Meyerand, Rasmus M. BirnList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.08431Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.08431Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.08431Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Functional connectivity, Scale (ratio), Machine learning, Bayesian probability, Computer science, Psychology, Neuroscience, Cartography, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3025313276 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.08431 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.08431 |
| ids.mag | 3025313276 |
| ids.openalex | https://openalex.org/W3025313276 |
| fwci | |
| type | preprint |
| title | Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional Connectivity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T13283 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Mental Health Research Topics |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9807999730110168 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.619270920753479 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5995842814445496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C3018011982 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5632700324058533 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[2].display_name | Functional connectivity |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5394502282142639 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4808448255062103 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47954699397087097 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4481278955936432 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39829307794570923 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20332291722297668 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C58640448 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15769276022911072 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[9].display_name | Cartography |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13720786571502686 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.619270920753479 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5995842814445496 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/functional-connectivity |
| keywords[2].score | 0.5632700324058533 |
| keywords[2].display_name | Functional connectivity |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5394502282142639 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4808448255062103 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.47954699397087097 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4481278955936432 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.39829307794570923 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.20332291722297668 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/cartography |
| keywords[9].score | 0.15769276022911072 |
| keywords[9].display_name | Cartography |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.13720786571502686 |
| keywords[10].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.08431 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.08431 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.08431 |
| locations[1].id | doi:10.48550/arxiv.2005.08431 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2005.08431 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5050110257 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Gengyan Zhao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison, #TAB# |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gengyan Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Wisconsin-Madison, #TAB# |
| authorships[1].author.id | https://openalex.org/A5012962437 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9497-2999 |
| authorships[1].author.display_name | Gyujoon Hwang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gyujoon Hwang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043743232 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2000-4028 |
| authorships[2].author.display_name | Cole J. Cook |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cole J. Cook |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100453030 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9242-9354 |
| authorships[3].author.display_name | Fang Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fang Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5090108909 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4655-8523 |
| authorships[4].author.display_name | M. Elizabeth Meyerand |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mary E. Meyerand |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5021076382 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3938-1077 |
| authorships[5].author.display_name | Rasmus M. Birn |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rasmus M. Birn |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.08431 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional Connectivity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W4383066092, https://openalex.org/W3215138031, https://openalex.org/W2804383999, https://openalex.org/W4380075502 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.08431 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.08431 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.08431 |
| primary_location.id | pmh:oai:arXiv.org:2005.08431 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.08431 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.08431 |
| publication_date | 2020-05-18 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2784262759, https://openalex.org/W2096966803, https://openalex.org/W2157446241, https://openalex.org/W2499800833, https://openalex.org/W2162390675, https://openalex.org/W2126370082, https://openalex.org/W2149463687, https://openalex.org/W2130325614, https://openalex.org/W2569531558, https://openalex.org/W1990392898, https://openalex.org/W2000567681, https://openalex.org/W2919115771, https://openalex.org/W2133257461, https://openalex.org/W2488353765, https://openalex.org/W2585560977, https://openalex.org/W601603264, https://openalex.org/W2070267783, https://openalex.org/W2073588997, https://openalex.org/W2163605009, https://openalex.org/W2095705004, https://openalex.org/W2096672020, https://openalex.org/W2117102945, https://openalex.org/W1457602677, https://openalex.org/W2510306587, https://openalex.org/W2056792865, https://openalex.org/W2060690669, https://openalex.org/W2124698428, https://openalex.org/W2304458595, https://openalex.org/W2024729467, https://openalex.org/W2117621792, https://openalex.org/W2057536936, https://openalex.org/W2001789423, https://openalex.org/W1997326091, https://openalex.org/W2567961463, https://openalex.org/W2076063813, https://openalex.org/W2964059111, https://openalex.org/W1995450007, https://openalex.org/W2165062525, https://openalex.org/W2141224535, https://openalex.org/W2035539599, https://openalex.org/W2617401930, https://openalex.org/W2008607322, https://openalex.org/W2009872283, https://openalex.org/W2106113519, https://openalex.org/W1983208069, https://openalex.org/W2794613614 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 7, 54, 155, 187 |
| abstract_inverted_index.FC | 47, 101, 126, 134, 182, 240 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.We | 138 |
| abstract_inverted_index.as | 87, 136, 186, 274 |
| abstract_inverted_index.in | 82, 113, 148 |
| abstract_inverted_index.of | 79, 97, 124, 143, 223, 277 |
| abstract_inverted_index.on | 103, 167, 207, 261 |
| abstract_inverted_index.to | 56, 66, 118, 160, 170, 179 |
| abstract_inverted_index.up | 273 |
| abstract_inverted_index.we | 116, 174 |
| abstract_inverted_index.25, | 244 |
| abstract_inverted_index.300 | 248 |
| abstract_inverted_index.50, | 245 |
| abstract_inverted_index.DNN | 156, 228, 254 |
| abstract_inverted_index.FC, | 265 |
| abstract_inverted_index.ICA | 278 |
| abstract_inverted_index.MRI | 221 |
| abstract_inverted_index.and | 10, 19, 24, 40, 42, 105, 153, 234 |
| abstract_inverted_index.any | 108 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.but | 72, 196, 266 |
| abstract_inverted_index.can | 33, 131, 190 |
| abstract_inverted_index.for | 6, 15, 201 |
| abstract_inverted_index.not | 191 |
| abstract_inverted_index.the | 12, 35, 50, 58, 83, 95, 98, 141, 144, 162, 171, 180, 208, 217, 239, 256, 262, 267, 275 |
| abstract_inverted_index.way | 55 |
| abstract_inverted_index.(FC) | 32 |
| abstract_inverted_index.100, | 246 |
| abstract_inverted_index.1003 | 224 |
| abstract_inverted_index.200, | 247 |
| abstract_inverted_index.also | 197 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.data | 222 |
| abstract_inverted_index.deep | 128, 149, 177 |
| abstract_inverted_index.done | 206 |
| abstract_inverted_index.each | 202 |
| abstract_inverted_index.from | 28, 49, 121, 243 |
| abstract_inverted_index.full | 133 |
| abstract_inverted_index.give | 107 |
| abstract_inverted_index.good | 70 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.long | 8 |
| abstract_inverted_index.make | 193 |
| abstract_inverted_index.many | 16 |
| abstract_inverted_index.omit | 94 |
| abstract_inverted_index.only | 192 |
| abstract_inverted_index.this | 114 |
| abstract_inverted_index.time | 9 |
| abstract_inverted_index.were | 205 |
| abstract_inverted_index.with | 127, 238 |
| abstract_inverted_index.(DNN) | 152 |
| abstract_inverted_index.(ICA) | 252 |
| abstract_inverted_index.93.5% | 233 |
| abstract_inverted_index.94.1% | 235 |
| abstract_inverted_index.Brain | 0 |
| abstract_inverted_index.Human | 210 |
| abstract_inverted_index.S1200 | 213 |
| abstract_inverted_index.apply | 175 |
| abstract_inverted_index.based | 166 |
| abstract_inverted_index.brain | 29, 38, 59, 100, 125, 181 |
| abstract_inverted_index.build | 34 |
| abstract_inverted_index.input | 99, 241 |
| abstract_inverted_index.known | 5 |
| abstract_inverted_index.males | 23 |
| abstract_inverted_index.model | 52, 109, 189, 199 |
| abstract_inverted_index.often | 93 |
| abstract_inverted_index.scale | 102, 264 |
| abstract_inverted_index.state | 219 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.their | 168 |
| abstract_inverted_index.which | 130, 185 |
| abstract_inverted_index.whole | 84 |
| abstract_inverted_index.83.0%, | 230 |
| abstract_inverted_index.87.6%, | 231 |
| abstract_inverted_index.92.0%, | 232 |
| abstract_inverted_index.First, | 227 |
| abstract_inverted_index.Hence, | 112 |
| abstract_inverted_index.cannot | 106 |
| abstract_inverted_index.effect | 96 |
| abstract_inverted_index.gender | 1, 45, 60, 67, 120, 183 |
| abstract_inverted_index.highly | 163 |
| abstract_inverted_index.linear | 268 |
| abstract_inverted_index.matrix | 86 |
| abstract_inverted_index.method | 159, 271 |
| abstract_inverted_index.models | 64, 92 |
| abstract_inverted_index.neural | 150 |
| abstract_inverted_index.number | 276 |
| abstract_inverted_index.offers | 53 |
| abstract_inverted_index.reason | 14 |
| abstract_inverted_index.scales | 123 |
| abstract_inverted_index.Current | 62 |
| abstract_inverted_index.Project | 212 |
| abstract_inverted_index.adults. | 226 |
| abstract_inverted_index.applied | 65 |
| abstract_inverted_index.between | 22, 37 |
| abstract_inverted_index.catches | 272 |
| abstract_inverted_index.current | 91 |
| abstract_inverted_index.dataset | 215 |
| abstract_inverted_index.derived | 242 |
| abstract_inverted_index.develop | 140 |
| abstract_inverted_index.extract | 74, 132, 161 |
| abstract_inverted_index.feature | 145, 157 |
| abstract_inverted_index.further | 139 |
| abstract_inverted_index.gender, | 41 |
| abstract_inverted_index.genders | 27 |
| abstract_inverted_index.healthy | 225 |
| abstract_inverted_index.instead | 78 |
| abstract_inverted_index.machine | 258, 269 |
| abstract_inverted_index.methods | 260 |
| abstract_inverted_index.network | 151 |
| abstract_inverted_index.predict | 119 |
| abstract_inverted_index.propose | 117, 154 |
| abstract_inverted_index.ranking | 158 |
| abstract_inverted_index.reaches | 229 |
| abstract_inverted_index.related | 46 |
| abstract_inverted_index.release | 214 |
| abstract_inverted_index.resting | 218 |
| abstract_inverted_index.usually | 73 |
| abstract_inverted_index.Bayesian | 176 |
| abstract_inverted_index.accurate | 194 |
| abstract_inverted_index.analysis | 251 |
| abstract_inverted_index.features | 48, 165 |
| abstract_inverted_index.females. | 25 |
| abstract_inverted_index.generate | 198 |
| abstract_inverted_index.learning | 178, 259, 270 |
| abstract_inverted_index.multiple | 122 |
| abstract_inverted_index.patterns | 81, 135 |
| abstract_inverted_index.possible | 13 |
| abstract_inverted_index.Moreover, | 173 |
| abstract_inverted_index.addition, | 90 |
| abstract_inverted_index.component | 250 |
| abstract_inverted_index.features. | 88, 137 |
| abstract_inverted_index.important | 44, 164 |
| abstract_inverted_index.learning, | 129 |
| abstract_inverted_index.mechanism | 147 |
| abstract_inverted_index.Connectome | 211 |
| abstract_inverted_index.Predicting | 26 |
| abstract_inverted_index.accuracies | 236 |
| abstract_inverted_index.activities | 39 |
| abstract_inverted_index.behavioral | 20 |
| abstract_inverted_index.components | 279 |
| abstract_inverted_index.comprising | 216 |
| abstract_inverted_index.extracting | 43 |
| abstract_inverted_index.extraction | 146 |
| abstract_inverted_index.functional | 30, 76, 220 |
| abstract_inverted_index.individual | 75 |
| abstract_inverted_index.prediction | 51, 68, 104 |
| abstract_inverted_index.predictive | 63 |
| abstract_inverted_index.Experiments | 204 |
| abstract_inverted_index.accuracies, | 71 |
| abstract_inverted_index.components. | 253 |
| abstract_inverted_index.connections | 77 |
| abstract_inverted_index.demonstrate | 69 |
| abstract_inverted_index.difference. | 61 |
| abstract_inverted_index.differences | 2, 21 |
| abstract_inverted_index.independent | 249 |
| abstract_inverted_index.investigate | 57 |
| abstract_inverted_index.outperforms | 255 |
| abstract_inverted_index.prediction, | 184 |
| abstract_inverted_index.prediction. | 172, 203 |
| abstract_inverted_index.predictions | 195 |
| abstract_inverted_index.psychiatric | 18 |
| abstract_inverted_index.uncertainty | 110, 200 |
| abstract_inverted_index.connectivity | 31, 80, 85 |
| abstract_inverted_index.conventional | 257 |
| abstract_inverted_index.high-quality | 209 |
| abstract_inverted_index.increases... | 280 |
| abstract_inverted_index.information. | 111 |
| abstract_inverted_index.relationship | 36 |
| abstract_inverted_index.respectively | 237 |
| abstract_inverted_index.contributions | 169 |
| abstract_inverted_index.probabilistic | 188 |
| abstract_inverted_index.understanding | 142 |
| abstract_inverted_index.psychological, | 17 |
| abstract_inverted_index.25-ICA-component | 263 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |