Deep learning and machine learning classification technique for integrated forecasting Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.11591/ijai.v13.i2.pp1519-1525
Smart fisheries are increasingly using artificial intelligence (AI) technologies to increase their sustainability. The potential fishing zone (PFZ) forecasts several fish aggregation zones throughout the duration of the prediction in any sea. The autoregressive integrated moving average (ARIMA) and random forest model are used in the current study to provide a technique for locating viable fishing zones in deep marine seas. A significant amount of data was gathered for the database's creation, including monitoring information for Indian fishing fleets from 2017 to 2019. Using expert label datasets for validation, it was discovered that the model's detection accuracy was 98%. Our method uses salinity and dissolved oxygen, two crucial markers of water quality, to identify suitable fishing zones for the first time. In the current research, a system was created to identify and map the quantity of fishing activity. The tests use a number of parameter measurements to evaluate the contrast-enhanced computed tomography (CECT) approach to machine learning (ML) and deep learning (DL) methodologies. The findings showed that the CECT had a 94% accuracy rate compared to a convolutional neural network's 92% accuracy rate for the 80% training data and 20% testing data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/ijai.v13.i2.pp1519-1525
- https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954
- OA Status
- diamond
- Cited By
- 2
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393974686
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393974686Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/ijai.v13.i2.pp1519-1525Digital Object Identifier
- Title
-
Deep learning and machine learning classification technique for integrated forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-05Full publication date if available
- Authors
-
M. Vigilson Prem, Sterlin Rani Devakadacham, S. Nithya Devi, N. Nandhakumar, Manjunathan Alagarsamy, S. KannadhasanList of authors in order
- Landing page
-
https://doi.org/10.11591/ijai.v13.i2.pp1519-1525Publisher landing page
- PDF URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954Direct OA link when available
- Concepts
-
Autoregressive integrated moving average, Fishing, Computer science, Random forest, Artificial intelligence, Convolutional neural network, Artificial neural network, Machine learning, Deep learning, Sustainability, Contrast (vision), Fishery, Time series, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393974686 |
|---|---|
| doi | https://doi.org/10.11591/ijai.v13.i2.pp1519-1525 |
| ids.doi | https://doi.org/10.11591/ijai.v13.i2.pp1519-1525 |
| ids.openalex | https://openalex.org/W4393974686 |
| fwci | 0.79387962 |
| type | article |
| title | Deep learning and machine learning classification technique for integrated forecasting |
| biblio.issue | 2 |
| biblio.volume | 13 |
| biblio.last_page | 1519 |
| biblio.first_page | 1519 |
| topics[0].id | https://openalex.org/T12697 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9652000069618225 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Water Quality Monitoring Technologies |
| topics[1].id | https://openalex.org/T10230 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9632999897003174 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Marine and fisheries research |
| topics[2].id | https://openalex.org/T12388 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9236999750137329 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Identification and Quantification in Food |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C24338571 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8267589211463928 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2566298 |
| concepts[0].display_name | Autoregressive integrated moving average |
| concepts[1].id | https://openalex.org/C514101110 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7501499056816101 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q14373 |
| concepts[1].display_name | Fishing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7452776432037354 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6381605863571167 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6281468272209167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6277570724487305 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5863156318664551 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5523359775543213 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5370949506759644 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C66204764 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4521307647228241 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q219416 |
| concepts[9].display_name | Sustainability |
| concepts[10].id | https://openalex.org/C2776502983 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4274919629096985 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[10].display_name | Contrast (vision) |
| concepts[11].id | https://openalex.org/C505870484 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32936856150627136 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180538 |
| concepts[11].display_name | Fishery |
| concepts[12].id | https://openalex.org/C151406439 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2796453833580017 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[12].display_name | Time series |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1108148992061615 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/autoregressive-integrated-moving-average |
| keywords[0].score | 0.8267589211463928 |
| keywords[0].display_name | Autoregressive integrated moving average |
| keywords[1].id | https://openalex.org/keywords/fishing |
| keywords[1].score | 0.7501499056816101 |
| keywords[1].display_name | Fishing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7452776432037354 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.6381605863571167 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6281468272209167 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.6277570724487305 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5863156318664551 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5523359775543213 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.5370949506759644 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/sustainability |
| keywords[9].score | 0.4521307647228241 |
| keywords[9].display_name | Sustainability |
| keywords[10].id | https://openalex.org/keywords/contrast |
| keywords[10].score | 0.4274919629096985 |
| keywords[10].display_name | Contrast (vision) |
| keywords[11].id | https://openalex.org/keywords/fishery |
| keywords[11].score | 0.32936856150627136 |
| keywords[11].display_name | Fishery |
| keywords[12].id | https://openalex.org/keywords/time-series |
| keywords[12].score | 0.2796453833580017 |
| keywords[12].display_name | Time series |
| keywords[13].id | https://openalex.org/keywords/ecology |
| keywords[13].score | 0.1108148992061615 |
| keywords[13].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.11591/ijai.v13.i2.pp1519-1525 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764408626 |
| locations[0].source.issn | 2089-4872, 2252-8938 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2089-4872 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IAES International Journal of Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| locations[0].landing_page_url | https://doi.org/10.11591/ijai.v13.i2.pp1519-1525 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053739141 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3810-8266 |
| authorships[0].author.display_name | M. Vigilson Prem |
| authorships[0].affiliations[0].raw_affiliation_string | R.M.K. College of Engineering and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vigilson Prem Monickaraj |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | R.M.K. College of Engineering and Technology |
| authorships[1].author.id | https://openalex.org/A5033016121 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sterlin Rani Devakadacham |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4387154816 |
| authorships[1].affiliations[0].raw_affiliation_string | R.M.D. Engineering College |
| authorships[1].institutions[0].id | https://openalex.org/I4387154816 |
| authorships[1].institutions[0].ror | https://ror.org/03gjktv92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4387154816 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | R.M.D. Engineering College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sterlin Rani Devakadacham |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | R.M.D. Engineering College |
| authorships[2].author.id | https://openalex.org/A5036378007 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0274-739X |
| authorships[2].author.display_name | S. Nithya Devi |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4387155059 |
| authorships[2].affiliations[0].raw_affiliation_string | Dr. N.G.P. Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I4387155059 |
| authorships[2].institutions[0].ror | https://ror.org/02dfe8754 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4387155059 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Dr. N.G.P. Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nithyadevi Shanmugam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dr. N.G.P. Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5080178180 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | N. Nandhakumar |
| authorships[3].affiliations[0].raw_affiliation_string | K. Ramakrishnan College of Engineering |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nithya Nandhakumar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | K. Ramakrishnan College of Engineering |
| authorships[4].author.id | https://openalex.org/A5047706793 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Manjunathan Alagarsamy |
| authorships[4].affiliations[0].raw_affiliation_string | K. Ramakrishnan College of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manjunathan Alagarsamy |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | K. Ramakrishnan College of Technology |
| authorships[5].author.id | https://openalex.org/A5024957212 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6443-9993 |
| authorships[5].author.display_name | S. Kannadhasan |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4387153575 |
| authorships[5].affiliations[0].raw_affiliation_string | Study World College of Engineering |
| authorships[5].institutions[0].id | https://openalex.org/I4387153575 |
| authorships[5].institutions[0].ror | https://ror.org/04hs8t575 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4387153575 |
| authorships[5].institutions[0].country_code | |
| authorships[5].institutions[0].display_name | Study World College of Engineering |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kannadhasan Suriyan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Study World College of Engineering |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-06T00:00:00 |
| display_name | Deep learning and machine learning classification technique for integrated forecasting |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12697 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9652000069618225 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Water Quality Monitoring Technologies |
| related_works | https://openalex.org/W3135881084, https://openalex.org/W2380590035, https://openalex.org/W2351712633, https://openalex.org/W4388984322, https://openalex.org/W4285509495, https://openalex.org/W1509694164, https://openalex.org/W3216381689, https://openalex.org/W4224133501, https://openalex.org/W3041008604, https://openalex.org/W4372048956 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/ijai.v13.i2.pp1519-1525 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764408626 |
| best_oa_location.source.issn | 2089-4872, 2252-8938 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2089-4872 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IAES International Journal of Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| best_oa_location.landing_page_url | https://doi.org/10.11591/ijai.v13.i2.pp1519-1525 |
| primary_location.id | doi:10.11591/ijai.v13.i2.pp1519-1525 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764408626 |
| primary_location.source.issn | 2089-4872, 2252-8938 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2089-4872 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IAES International Journal of Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://ijai.iaescore.com/index.php/IJAI/article/download/22765/13954 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IAES International Journal of Artificial Intelligence (IJ-AI) |
| primary_location.landing_page_url | https://doi.org/10.11591/ijai.v13.i2.pp1519-1525 |
| publication_date | 2024-04-05 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2954390006, https://openalex.org/W2417064059, https://openalex.org/W3100431304, https://openalex.org/W3135686383, https://openalex.org/W3196308418, https://openalex.org/W3165685657, https://openalex.org/W2955224916, https://openalex.org/W3013911456, https://openalex.org/W3001760905, https://openalex.org/W4239533237, https://openalex.org/W2932315469, https://openalex.org/W3159049320, https://openalex.org/W4308488197, https://openalex.org/W4313257360, https://openalex.org/W4296203611, https://openalex.org/W4312186858, https://openalex.org/W4223478633, https://openalex.org/W4214884506, https://openalex.org/W4205507618, https://openalex.org/W4206911247, https://openalex.org/W3206941713, https://openalex.org/W3197065975 |
| referenced_works_count | 22 |
| abstract_inverted_index.A | 61 |
| abstract_inverted_index.a | 50, 125, 141, 170, 176 |
| abstract_inverted_index.In | 121 |
| abstract_inverted_index.in | 29, 44, 57 |
| abstract_inverted_index.it | 89 |
| abstract_inverted_index.of | 26, 64, 109, 135, 143 |
| abstract_inverted_index.to | 9, 48, 81, 112, 129, 146, 154, 175 |
| abstract_inverted_index.20% | 189 |
| abstract_inverted_index.80% | 185 |
| abstract_inverted_index.92% | 180 |
| abstract_inverted_index.94% | 171 |
| abstract_inverted_index.Our | 99 |
| abstract_inverted_index.The | 13, 32, 138, 163 |
| abstract_inverted_index.and | 38, 103, 131, 158, 188 |
| abstract_inverted_index.any | 30 |
| abstract_inverted_index.are | 2, 42 |
| abstract_inverted_index.for | 52, 68, 75, 87, 117, 183 |
| abstract_inverted_index.had | 169 |
| abstract_inverted_index.map | 132 |
| abstract_inverted_index.the | 24, 27, 45, 69, 93, 118, 122, 133, 148, 167, 184 |
| abstract_inverted_index.two | 106 |
| abstract_inverted_index.use | 140 |
| abstract_inverted_index.was | 66, 90, 97, 127 |
| abstract_inverted_index.(AI) | 7 |
| abstract_inverted_index.(DL) | 161 |
| abstract_inverted_index.(ML) | 157 |
| abstract_inverted_index.2017 | 80 |
| abstract_inverted_index.98%. | 98 |
| abstract_inverted_index.CECT | 168 |
| abstract_inverted_index.data | 65, 187 |
| abstract_inverted_index.deep | 58, 159 |
| abstract_inverted_index.fish | 20 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.rate | 173, 182 |
| abstract_inverted_index.sea. | 31 |
| abstract_inverted_index.that | 92, 166 |
| abstract_inverted_index.used | 43 |
| abstract_inverted_index.uses | 101 |
| abstract_inverted_index.zone | 16 |
| abstract_inverted_index.(PFZ) | 17 |
| abstract_inverted_index.2019. | 82 |
| abstract_inverted_index.Smart | 0 |
| abstract_inverted_index.Using | 83 |
| abstract_inverted_index.data. | 191 |
| abstract_inverted_index.first | 119 |
| abstract_inverted_index.label | 85 |
| abstract_inverted_index.model | 41 |
| abstract_inverted_index.seas. | 60 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.tests | 139 |
| abstract_inverted_index.their | 11 |
| abstract_inverted_index.time. | 120 |
| abstract_inverted_index.using | 4 |
| abstract_inverted_index.water | 110 |
| abstract_inverted_index.zones | 22, 56, 116 |
| abstract_inverted_index.(CECT) | 152 |
| abstract_inverted_index.Indian | 76 |
| abstract_inverted_index.amount | 63 |
| abstract_inverted_index.expert | 84 |
| abstract_inverted_index.fleets | 78 |
| abstract_inverted_index.forest | 40 |
| abstract_inverted_index.marine | 59 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.moving | 35 |
| abstract_inverted_index.neural | 178 |
| abstract_inverted_index.number | 142 |
| abstract_inverted_index.random | 39 |
| abstract_inverted_index.showed | 165 |
| abstract_inverted_index.system | 126 |
| abstract_inverted_index.viable | 54 |
| abstract_inverted_index.(ARIMA) | 37 |
| abstract_inverted_index.average | 36 |
| abstract_inverted_index.created | 128 |
| abstract_inverted_index.crucial | 107 |
| abstract_inverted_index.current | 46, 123 |
| abstract_inverted_index.fishing | 15, 55, 77, 115, 136 |
| abstract_inverted_index.machine | 155 |
| abstract_inverted_index.markers | 108 |
| abstract_inverted_index.model's | 94 |
| abstract_inverted_index.oxygen, | 105 |
| abstract_inverted_index.provide | 49 |
| abstract_inverted_index.several | 19 |
| abstract_inverted_index.testing | 190 |
| abstract_inverted_index.accuracy | 96, 172, 181 |
| abstract_inverted_index.approach | 153 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.computed | 150 |
| abstract_inverted_index.datasets | 86 |
| abstract_inverted_index.duration | 25 |
| abstract_inverted_index.evaluate | 147 |
| abstract_inverted_index.findings | 164 |
| abstract_inverted_index.gathered | 67 |
| abstract_inverted_index.identify | 113, 130 |
| abstract_inverted_index.increase | 10 |
| abstract_inverted_index.learning | 156, 160 |
| abstract_inverted_index.locating | 53 |
| abstract_inverted_index.quality, | 111 |
| abstract_inverted_index.quantity | 134 |
| abstract_inverted_index.salinity | 102 |
| abstract_inverted_index.suitable | 114 |
| abstract_inverted_index.training | 186 |
| abstract_inverted_index.activity. | 137 |
| abstract_inverted_index.creation, | 71 |
| abstract_inverted_index.detection | 95 |
| abstract_inverted_index.dissolved | 104 |
| abstract_inverted_index.fisheries | 1 |
| abstract_inverted_index.forecasts | 18 |
| abstract_inverted_index.including | 72 |
| abstract_inverted_index.network's | 179 |
| abstract_inverted_index.parameter | 144 |
| abstract_inverted_index.potential | 14 |
| abstract_inverted_index.research, | 124 |
| abstract_inverted_index.technique | 51 |
| abstract_inverted_index.artificial | 5 |
| abstract_inverted_index.database's | 70 |
| abstract_inverted_index.discovered | 91 |
| abstract_inverted_index.integrated | 34 |
| abstract_inverted_index.monitoring | 73 |
| abstract_inverted_index.prediction | 28 |
| abstract_inverted_index.throughout | 23 |
| abstract_inverted_index.tomography | 151 |
| abstract_inverted_index.aggregation | 21 |
| abstract_inverted_index.information | 74 |
| abstract_inverted_index.significant | 62 |
| abstract_inverted_index.validation, | 88 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.intelligence | 6 |
| abstract_inverted_index.measurements | 145 |
| abstract_inverted_index.technologies | 8 |
| abstract_inverted_index.convolutional | 177 |
| abstract_inverted_index.autoregressive | 33 |
| abstract_inverted_index.methodologies. | 162 |
| abstract_inverted_index.sustainability. | 12 |
| abstract_inverted_index.contrast-enhanced | 149 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.63297872 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |