Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1080/21681163.2021.1997646
Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation. Snapshot mosaic cameras, which can capture hyperspectral data in a single exposure, have the potential to make a real-time hyperspectral imaging system for surgical decision-making possible. However, optimal exploitation of the captured data requires solving an ill-posed demosaicking problem and applying additional spectral corrections to recover spatial and spectral information of the image. In this work, we propose a deep learning-based image demosaicking algorithm for snapshot hyperspectral images using supervised learning methods. Due to the lack of publicly available medical images acquired with snapshot mosaic cameras, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets captured by high-resolution, but slow, hyperspectral imaging devices. Image reconstruction is achieved using convolutional neural networks for hyperspectral image super-resolution, followed by cross-talk and leakage correction using a sensor-specific calibration matrix. The resulting demosaicked images are evaluated both quantitatively and qualitatively, showing clear improvements in image quality compared to a baseline demosaicking method using linear interpolation. Moreover, the fast processing time of~45\,ms of our algorithm to obtain super-resolved RGB or oxygenation saturation maps per image frame for a state-of-the-art snapshot mosaic camera demonstrates the potential for its seamless integration into real-time surgical hyperspectral imaging applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1080/21681163.2021.1997646
- OA Status
- hybrid
- References
- 21
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3197430628
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3197430628Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/21681163.2021.1997646Digital Object Identifier
- Title
-
Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstructionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-30Full publication date if available
- Authors
-
Peichao Li, Michael Ebner, Philip J. Noonan, Conor C. Horgan, Anisha Bahl, Sébastien Ourselin, Jonathan Shapey, Tom VercauterenList of authors in order
- Landing page
-
https://doi.org/10.1080/21681163.2021.1997646Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/21681163.2021.1997646Direct OA link when available
- Concepts
-
Hyperspectral imaging, Artificial intelligence, Demosaicing, Snapshot (computer storage), Computer vision, Computer science, RGB color model, Spectral imaging, Image resolution, Full spectral imaging, Convolutional neural network, Pattern recognition (psychology), Image processing, Remote sensing, Color image, Image (mathematics), Geography, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3197430628 |
|---|---|
| doi | https://doi.org/10.1080/21681163.2021.1997646 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.01403 |
| ids.mag | 3197430628 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38013723 |
| ids.openalex | https://openalex.org/W3197430628 |
| fwci | 0.0 |
| type | preprint |
| title | Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction |
| biblio.issue | 4 |
| biblio.volume | 10 |
| biblio.last_page | 417 |
| biblio.first_page | 409 |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| topics[1].id | https://openalex.org/T12015 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Photoacoustic and Ultrasonic Imaging |
| topics[2].id | https://openalex.org/T10977 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9984999895095825 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Optical Imaging and Spectroscopy Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9266015291213989 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7836018800735474 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C27624317 |
| concepts[2].level | 5 |
| concepts[2].score | 0.7275342345237732 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q263499 |
| concepts[2].display_name | Demosaicing |
| concepts[3].id | https://openalex.org/C55282118 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7249819040298462 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q252683 |
| concepts[3].display_name | Snapshot (computer storage) |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.685509443283081 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6758207678794861 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C82990744 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5480629205703735 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[6].display_name | RGB color model |
| concepts[7].id | https://openalex.org/C3232514 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4788398742675781 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7575196 |
| concepts[7].display_name | Spectral imaging |
| concepts[8].id | https://openalex.org/C205372480 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4588398039340973 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[8].display_name | Image resolution |
| concepts[9].id | https://openalex.org/C78660771 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43969613313674927 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5508206 |
| concepts[9].display_name | Full spectral imaging |
| concepts[10].id | https://openalex.org/C81363708 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41079437732696533 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[10].display_name | Convolutional neural network |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3501681089401245 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C9417928 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3305552005767822 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[12].display_name | Image processing |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26592886447906494 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C142616399 |
| concepts[14].level | 4 |
| concepts[14].score | 0.20382574200630188 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5148604 |
| concepts[14].display_name | Color image |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.17029592394828796 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08205550909042358 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9266015291213989 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7836018800735474 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/demosaicing |
| keywords[2].score | 0.7275342345237732 |
| keywords[2].display_name | Demosaicing |
| keywords[3].id | https://openalex.org/keywords/snapshot |
| keywords[3].score | 0.7249819040298462 |
| keywords[3].display_name | Snapshot (computer storage) |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.685509443283081 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6758207678794861 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/rgb-color-model |
| keywords[6].score | 0.5480629205703735 |
| keywords[6].display_name | RGB color model |
| keywords[7].id | https://openalex.org/keywords/spectral-imaging |
| keywords[7].score | 0.4788398742675781 |
| keywords[7].display_name | Spectral imaging |
| keywords[8].id | https://openalex.org/keywords/image-resolution |
| keywords[8].score | 0.4588398039340973 |
| keywords[8].display_name | Image resolution |
| keywords[9].id | https://openalex.org/keywords/full-spectral-imaging |
| keywords[9].score | 0.43969613313674927 |
| keywords[9].display_name | Full spectral imaging |
| keywords[10].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[10].score | 0.41079437732696533 |
| keywords[10].display_name | Convolutional neural network |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3501681089401245 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image-processing |
| keywords[12].score | 0.3305552005767822 |
| keywords[12].display_name | Image processing |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.26592886447906494 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/color-image |
| keywords[14].score | 0.20382574200630188 |
| keywords[14].display_name | Color image |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.17029592394828796 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.08205550909042358 |
| keywords[16].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1080/21681163.2021.1997646 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764763012 |
| locations[0].source.issn | 2168-1163, 2168-1171 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-1163 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization |
| locations[0].landing_page_url | https://doi.org/10.1080/21681163.2021.1997646 |
| locations[1].id | pmid:38013723 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computer methods in biomechanics and biomedical engineering. Imaging & visualization |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38013723 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10461732 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10461732/pdf/TCIV_10_1997646.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Comput Methods Biomech Biomed Eng Imaging Vis |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10461732 |
| locations[3].id | mag:3197430628 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | http://arxiv.org/pdf/2109.01403.pdf |
| locations[4].id | doi:10.48550/arxiv.2109.01403 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article-journal |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2109.01403 |
| indexed_in | crossref, datacite, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101739544 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3344-0294 |
| authorships[0].author.display_name | Peichao Li |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[0].affiliations[0].raw_affiliation_string | King's College London |
| authorships[0].institutions[0].id | https://openalex.org/I183935753 |
| authorships[0].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | King's College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peichao Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | King's College London |
| authorships[1].author.id | https://openalex.org/A5045321937 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0170-7062 |
| authorships[1].author.display_name | Michael Ebner |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I183935753 |
| authorships[1].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | King's College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael Ebner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[2].author.id | https://openalex.org/A5087583681 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Philip J. Noonan |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London London UK |
| authorships[2].institutions[0].id | https://openalex.org/I183935753 |
| authorships[2].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | King's College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Philip Noonan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London London UK |
| authorships[3].author.id | https://openalex.org/A5085118209 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0495-1615 |
| authorships[3].author.display_name | Conor C. Horgan |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[3].institutions[0].id | https://openalex.org/I183935753 |
| authorships[3].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | King's College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Conor Horgan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[4].author.id | https://openalex.org/A5068625081 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6485-2091 |
| authorships[4].author.display_name | Anisha Bahl |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London London UK |
| authorships[4].institutions[0].id | https://openalex.org/I183935753 |
| authorships[4].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | King's College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anisha Bahl |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London London UK |
| authorships[5].author.id | https://openalex.org/A5082106258 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5694-5340 |
| authorships[5].author.display_name | Sébastien Ourselin |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[5].institutions[0].id | https://openalex.org/I183935753 |
| authorships[5].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | King's College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sebastien Ourselin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[6].author.id | https://openalex.org/A5055632531 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0291-348X |
| authorships[6].author.display_name | Jonathan Shapey |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210111135 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I183935753 |
| authorships[6].affiliations[1].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[6].institutions[0].id | https://openalex.org/I4210111135 |
| authorships[6].institutions[0].ror | https://ror.org/01n0k5m85 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210111135 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | King's College Hospital NHS Foundation Trust |
| authorships[6].institutions[1].id | https://openalex.org/I183935753 |
| authorships[6].institutions[1].ror | https://ror.org/0220mzb33 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[6].institutions[1].country_code | GB |
| authorships[6].institutions[1].display_name | King's College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jonathan Shapey |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[7].author.id | https://openalex.org/A5028279799 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1794-0456 |
| authorships[7].author.display_name | Tom Vercauteren |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| authorships[7].institutions[0].id | https://openalex.org/I183935753 |
| authorships[7].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | King's College London |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Tom Vercauteren |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/21681163.2021.1997646 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning approach for hyperspectral image demosaicking, spectral correction and high-resolution RGB reconstruction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| related_works | https://openalex.org/W3208465643, https://openalex.org/W2997786861, https://openalex.org/W2737331613, https://openalex.org/W1980567924, https://openalex.org/W2133210868, https://openalex.org/W2956876211, https://openalex.org/W2815207682, https://openalex.org/W2166050502, https://openalex.org/W1985857153, https://openalex.org/W2200474412, https://openalex.org/W2848012798, https://openalex.org/W2912432901, https://openalex.org/W2122143316, https://openalex.org/W2981890818, https://openalex.org/W2126219563, https://openalex.org/W2992915014, https://openalex.org/W3028092635, https://openalex.org/W2213881953, https://openalex.org/W2954287252, https://openalex.org/W2048225904 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1080/21681163.2021.1997646 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764763012 |
| best_oa_location.source.issn | 2168-1163, 2168-1171 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2168-1163 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization |
| best_oa_location.landing_page_url | https://doi.org/10.1080/21681163.2021.1997646 |
| primary_location.id | doi:10.1080/21681163.2021.1997646 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764763012 |
| primary_location.source.issn | 2168-1163, 2168-1171 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-1163 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Computer Methods in Biomechanics and Biomedical Engineering Imaging & Visualization |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization |
| primary_location.landing_page_url | https://doi.org/10.1080/21681163.2021.1997646 |
| publication_date | 2021-11-30 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3016505311, https://openalex.org/W2884188838, https://openalex.org/W3158633215, https://openalex.org/W2921862546, https://openalex.org/W3097487475, https://openalex.org/W2331128040, https://openalex.org/W3010267966, https://openalex.org/W2912684384, https://openalex.org/W1988386267, https://openalex.org/W3034595214, https://openalex.org/W1901129140, https://openalex.org/W2921625280, https://openalex.org/W2516271670, https://openalex.org/W2990958020, https://openalex.org/W2084591647, https://openalex.org/W2962785568, https://openalex.org/W2901505364, https://openalex.org/W2962835968, https://openalex.org/W2593424999, https://openalex.org/W2964121744, https://openalex.org/W1965061537 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 22, 30, 71, 99, 142, 164, 192 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.an | 48 |
| abstract_inverted_index.by | 116, 136 |
| abstract_inverted_index.in | 21, 159 |
| abstract_inverted_index.is | 2, 104, 125 |
| abstract_inverted_index.of | 4, 42, 63, 89, 177 |
| abstract_inverted_index.or | 184 |
| abstract_inverted_index.to | 28, 57, 86, 106, 163, 180 |
| abstract_inverted_index.we | 69 |
| abstract_inverted_index.Due | 85 |
| abstract_inverted_index.RGB | 183 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 52, 60, 138, 154 |
| abstract_inverted_index.are | 150 |
| abstract_inverted_index.but | 118 |
| abstract_inverted_index.can | 17 |
| abstract_inverted_index.for | 9, 35, 77, 131, 191, 200 |
| abstract_inverted_index.its | 201 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 178 |
| abstract_inverted_index.per | 188 |
| abstract_inverted_index.the | 5, 26, 43, 64, 87, 172, 198 |
| abstract_inverted_index.both | 152 |
| abstract_inverted_index.data | 20, 45 |
| abstract_inverted_index.deep | 72 |
| abstract_inverted_index.fast | 173 |
| abstract_inverted_index.from | 110 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.into | 204 |
| abstract_inverted_index.lack | 88 |
| abstract_inverted_index.make | 29 |
| abstract_inverted_index.maps | 187 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.this | 67 |
| abstract_inverted_index.time | 175 |
| abstract_inverted_index.with | 95 |
| abstract_inverted_index.Image | 123 |
| abstract_inverted_index.clear | 157 |
| abstract_inverted_index.frame | 190 |
| abstract_inverted_index.image | 74, 101, 113, 133, 160, 189 |
| abstract_inverted_index.slow, | 119 |
| abstract_inverted_index.using | 81, 127, 141, 168 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.work, | 68 |
| abstract_inverted_index.camera | 196 |
| abstract_inverted_index.image. | 65 |
| abstract_inverted_index.images | 80, 93, 109, 149 |
| abstract_inverted_index.linear | 169 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.mosaic | 14, 97, 195 |
| abstract_inverted_index.neural | 129 |
| abstract_inverted_index.obtain | 181 |
| abstract_inverted_index.single | 23 |
| abstract_inverted_index.system | 34 |
| abstract_inverted_index.tissue | 11 |
| abstract_inverted_index.capture | 18 |
| abstract_inverted_index.imaging | 1, 33, 121, 208 |
| abstract_inverted_index.leakage | 139 |
| abstract_inverted_index.matrix. | 145 |
| abstract_inverted_index.medical | 92, 112 |
| abstract_inverted_index.optimal | 40 |
| abstract_inverted_index.problem | 51 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.quality | 161 |
| abstract_inverted_index.recover | 58 |
| abstract_inverted_index.showing | 156 |
| abstract_inverted_index.solving | 47 |
| abstract_inverted_index.spatial | 59 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.Snapshot | 13 |
| abstract_inverted_index.achieved | 126 |
| abstract_inverted_index.acquired | 94 |
| abstract_inverted_index.applying | 53 |
| abstract_inverted_index.approach | 103 |
| abstract_inverted_index.baseline | 165 |
| abstract_inverted_index.cameras, | 15, 98 |
| abstract_inverted_index.captured | 44, 115 |
| abstract_inverted_index.compared | 162 |
| abstract_inverted_index.datasets | 114 |
| abstract_inverted_index.devices. | 122 |
| abstract_inverted_index.existing | 111 |
| abstract_inverted_index.followed | 135 |
| abstract_inverted_index.learning | 83 |
| abstract_inverted_index.methods. | 84 |
| abstract_inverted_index.networks | 130 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.publicly | 90 |
| abstract_inverted_index.requires | 46 |
| abstract_inverted_index.seamless | 202 |
| abstract_inverted_index.simulate | 107 |
| abstract_inverted_index.snapshot | 78, 96, 108, 194 |
| abstract_inverted_index.spectral | 55, 61 |
| abstract_inverted_index.surgical | 36, 206 |
| abstract_inverted_index.Moreover, | 171 |
| abstract_inverted_index.algorithm | 76, 179 |
| abstract_inverted_index.available | 91 |
| abstract_inverted_index.evaluated | 151 |
| abstract_inverted_index.exposure, | 24 |
| abstract_inverted_index.ill-posed | 49 |
| abstract_inverted_index.of~45\,ms | 176 |
| abstract_inverted_index.possible. | 38 |
| abstract_inverted_index.potential | 27, 199 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.real-time | 31, 205 |
| abstract_inverted_index.resulting | 147 |
| abstract_inverted_index.synthetic | 100 |
| abstract_inverted_index.additional | 54 |
| abstract_inverted_index.correction | 140 |
| abstract_inverted_index.cross-talk | 137 |
| abstract_inverted_index.generation | 102 |
| abstract_inverted_index.processing | 174 |
| abstract_inverted_index.saturation | 186 |
| abstract_inverted_index.supervised | 82 |
| abstract_inverted_index.techniques | 8 |
| abstract_inverted_index.calibration | 144 |
| abstract_inverted_index.corrections | 56 |
| abstract_inverted_index.demosaicked | 148 |
| abstract_inverted_index.information | 62 |
| abstract_inverted_index.integration | 203 |
| abstract_inverted_index.oxygenation | 185 |
| abstract_inverted_index.demonstrates | 197 |
| abstract_inverted_index.demosaicking | 50, 75, 166 |
| abstract_inverted_index.exploitation | 41 |
| abstract_inverted_index.improvements | 158 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.applications. | 209 |
| abstract_inverted_index.convolutional | 128 |
| abstract_inverted_index.hyperspectral | 19, 32, 79, 120, 132, 207 |
| abstract_inverted_index.interpolation. | 170 |
| abstract_inverted_index.intraoperative | 10 |
| abstract_inverted_index.learning-based | 73 |
| abstract_inverted_index.qualitatively, | 155 |
| abstract_inverted_index.quantitatively | 153 |
| abstract_inverted_index.reconstruction | 124 |
| abstract_inverted_index.super-resolved | 182 |
| abstract_inverted_index.decision-making | 37 |
| abstract_inverted_index.sensor-specific | 143 |
| abstract_inverted_index.high-resolution, | 117 |
| abstract_inverted_index.state-of-the-art | 193 |
| abstract_inverted_index.characterisation. | 12 |
| abstract_inverted_index.super-resolution, | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.16064281 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |