Deep-Learning-Based Arrhythmia Detection Using ECG Signals: A Comparative Study and Performance Evaluation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics13243605
Heart diseases is the world’s principal cause of death, and arrhythmia poses a serious risk to the health of the patient. Electrocardiogram (ECG) signals can be used to detect arrhythmia early and accurately, which is essential for immediate treatment and intervention. Deep learning approaches have played an important role in automatically identifying complicated patterns from ECG data, which can be further used to identify arrhythmia. In this paper, deep-learning-based methods for arrhythmia identification using ECG signals are thoroughly studied and their performances evaluated on the basis of accuracy, specificity, precision, and F1 score. We propose the development of a small CNN, and its performance is compared against pretrained models like GoogLeNet. The comparative study demonstrates the promising potential of deep-learning-based arrhythmia identification using ECG signals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics13243605
- https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264
- OA Status
- gold
- Cited By
- 38
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389336651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389336651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics13243605Digital Object Identifier
- Title
-
Deep-Learning-Based Arrhythmia Detection Using ECG Signals: A Comparative Study and Performance EvaluationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-05Full publication date if available
- Authors
-
Nitish Katal, Saurav Gupta, Pankaj Verma, Bhisham SharmaList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics13243605Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264Direct OA link when available
- Concepts
-
Deep learning, Cardiac arrhythmia, Artificial intelligence, Computer science, Identification (biology), Machine learning, F1 score, Pattern recognition (psychology), Medicine, Cardiology, Atrial fibrillation, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22, 2024: 16Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389336651 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics13243605 |
| ids.doi | https://doi.org/10.3390/diagnostics13243605 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38132188 |
| ids.openalex | https://openalex.org/W4389336651 |
| fwci | 12.75724142 |
| type | article |
| title | Deep-Learning-Based Arrhythmia Detection Using ECG Signals: A Comparative Study and Performance Evaluation |
| biblio.issue | 24 |
| biblio.volume | 13 |
| biblio.last_page | 3605 |
| biblio.first_page | 3605 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T10217 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Cardiac electrophysiology and arrhythmias |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8167340755462646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C2988455589 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6949085593223572 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189331 |
| concepts[1].display_name | Cardiac arrhythmia |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6820387244224548 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5929983258247375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C116834253 |
| concepts[4].level | 2 |
| concepts[4].score | 0.564411997795105 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[4].display_name | Identification (biology) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43616583943367004 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C148524875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4218490719795227 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[6].display_name | F1 score |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40436434745788574 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2551257610321045 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C164705383 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21774804592132568 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[9].display_name | Cardiology |
| concepts[10].id | https://openalex.org/C2779161974 |
| concepts[10].level | 2 |
| concepts[10].score | 0.12755972146987915 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[10].display_name | Atrial fibrillation |
| concepts[11].id | https://openalex.org/C59822182 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[11].display_name | Botany |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.8167340755462646 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/cardiac-arrhythmia |
| keywords[1].score | 0.6949085593223572 |
| keywords[1].display_name | Cardiac arrhythmia |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6820387244224548 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5929983258247375 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/identification |
| keywords[4].score | 0.564411997795105 |
| keywords[4].display_name | Identification (biology) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.43616583943367004 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/f1-score |
| keywords[6].score | 0.4218490719795227 |
| keywords[6].display_name | F1 score |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.40436434745788574 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.2551257610321045 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/cardiology |
| keywords[9].score | 0.21774804592132568 |
| keywords[9].display_name | Cardiology |
| keywords[10].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[10].score | 0.12755972146987915 |
| keywords[10].display_name | Atrial fibrillation |
| language | en |
| locations[0].id | doi:10.3390/diagnostics13243605 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics13243605 |
| locations[1].id | pmid:38132188 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38132188 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10742760 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10742760/pdf/diagnostics-13-03605.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10742760 |
| locations[3].id | pmh:oai:doaj.org/article:7eaf556f07a04b919640802694120fb6 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics, Vol 13, Iss 24, p 3605 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/7eaf556f07a04b919640802694120fb6 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5050348696 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8390-0722 |
| authorships[0].author.display_name | Nitish Katal |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I876193797 |
| authorships[0].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nitish Katal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5035658922 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8028-547X |
| authorships[1].author.display_name | Saurav Gupta |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I876193797 |
| authorships[1].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saurav Gupta |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India |
| authorships[2].author.id | https://openalex.org/A5055721551 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0349-112X |
| authorships[2].author.display_name | Pankaj Verma |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[2].affiliations[0].raw_affiliation_string | University Centre for Research and Development, Academic Unit 2, Chandigarh University, Mohali 140413, Punjab, India |
| authorships[2].institutions[0].id | https://openalex.org/I101407740 |
| authorships[2].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Chandigarh University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pankaj Verma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University Centre for Research and Development, Academic Unit 2, Chandigarh University, Mohali 140413, Punjab, India |
| authorships[3].author.id | https://openalex.org/A5057555412 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Bhisham Sharma |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I74319210 |
| authorships[3].affiliations[0].raw_affiliation_string | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| authorships[3].institutions[0].id | https://openalex.org/I74319210 |
| authorships[3].institutions[0].ror | https://ror.org/057d6z539 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I74319210 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Chitkara University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bhisham Sharma |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep-Learning-Based Arrhythmia Detection Using ECG Signals: A Comparative Study and Performance Evaluation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W2731899572, https://openalex.org/W4304166257, https://openalex.org/W4294635752, https://openalex.org/W4380075502, https://openalex.org/W2807586294, https://openalex.org/W4391114540, https://openalex.org/W4293869049 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 16 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/diagnostics13243605 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics13243605 |
| primary_location.id | doi:10.3390/diagnostics13243605 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/13/24/3605/pdf?version=1701772264 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics13243605 |
| publication_date | 2023-12-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1994788779, https://openalex.org/W2969035745, https://openalex.org/W3091080487, https://openalex.org/W2599761051, https://openalex.org/W3040780524, https://openalex.org/W2951250226, https://openalex.org/W2768866949, https://openalex.org/W2884237723, https://openalex.org/W2050259033, https://openalex.org/W2125927307, https://openalex.org/W2521499510, https://openalex.org/W3082849008, https://openalex.org/W4297236469, https://openalex.org/W3210612208, https://openalex.org/W4384818051, https://openalex.org/W2799460054, https://openalex.org/W2604926040, https://openalex.org/W2082589768, https://openalex.org/W3087520086, https://openalex.org/W2103308415, https://openalex.org/W2064493351, https://openalex.org/W3204644646, https://openalex.org/W2965318968, https://openalex.org/W3036776350, https://openalex.org/W2807367691, https://openalex.org/W3022945091, https://openalex.org/W3095676345, https://openalex.org/W3013966144, https://openalex.org/W2891342985, https://openalex.org/W2289846183, https://openalex.org/W2897062077, https://openalex.org/W4225000912, https://openalex.org/W4286001416, https://openalex.org/W3217455057, https://openalex.org/W4285229700, https://openalex.org/W4225773933 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 12, 98 |
| abstract_inverted_index.F1 | 91 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.an | 46 |
| abstract_inverted_index.be | 25, 59 |
| abstract_inverted_index.in | 49 |
| abstract_inverted_index.is | 2, 34, 104 |
| abstract_inverted_index.of | 7, 18, 86, 97, 118 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 15, 27, 62 |
| abstract_inverted_index.ECG | 55, 74, 123 |
| abstract_inverted_index.The | 111 |
| abstract_inverted_index.and | 9, 31, 39, 79, 90, 101 |
| abstract_inverted_index.are | 76 |
| abstract_inverted_index.can | 24, 58 |
| abstract_inverted_index.for | 36, 70 |
| abstract_inverted_index.its | 102 |
| abstract_inverted_index.the | 3, 16, 19, 84, 95, 115 |
| abstract_inverted_index.CNN, | 100 |
| abstract_inverted_index.Deep | 41 |
| abstract_inverted_index.from | 54 |
| abstract_inverted_index.have | 44 |
| abstract_inverted_index.like | 109 |
| abstract_inverted_index.risk | 14 |
| abstract_inverted_index.role | 48 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.used | 26, 61 |
| abstract_inverted_index.(ECG) | 22 |
| abstract_inverted_index.Heart | 0 |
| abstract_inverted_index.basis | 85 |
| abstract_inverted_index.cause | 6 |
| abstract_inverted_index.data, | 56 |
| abstract_inverted_index.early | 30 |
| abstract_inverted_index.poses | 11 |
| abstract_inverted_index.small | 99 |
| abstract_inverted_index.study | 113 |
| abstract_inverted_index.their | 80 |
| abstract_inverted_index.using | 73, 122 |
| abstract_inverted_index.which | 33, 57 |
| abstract_inverted_index.death, | 8 |
| abstract_inverted_index.detect | 28 |
| abstract_inverted_index.health | 17 |
| abstract_inverted_index.models | 108 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.played | 45 |
| abstract_inverted_index.score. | 92 |
| abstract_inverted_index.against | 106 |
| abstract_inverted_index.further | 60 |
| abstract_inverted_index.methods | 69 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.serious | 13 |
| abstract_inverted_index.signals | 23, 75 |
| abstract_inverted_index.studied | 78 |
| abstract_inverted_index.compared | 105 |
| abstract_inverted_index.diseases | 1 |
| abstract_inverted_index.identify | 63 |
| abstract_inverted_index.learning | 42 |
| abstract_inverted_index.patient. | 20 |
| abstract_inverted_index.patterns | 53 |
| abstract_inverted_index.signals. | 124 |
| abstract_inverted_index.accuracy, | 87 |
| abstract_inverted_index.essential | 35 |
| abstract_inverted_index.evaluated | 82 |
| abstract_inverted_index.immediate | 37 |
| abstract_inverted_index.important | 47 |
| abstract_inverted_index.potential | 117 |
| abstract_inverted_index.principal | 5 |
| abstract_inverted_index.promising | 116 |
| abstract_inverted_index.treatment | 38 |
| abstract_inverted_index.world’s | 4 |
| abstract_inverted_index.GoogLeNet. | 110 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.arrhythmia | 10, 29, 71, 120 |
| abstract_inverted_index.precision, | 89 |
| abstract_inverted_index.pretrained | 107 |
| abstract_inverted_index.thoroughly | 77 |
| abstract_inverted_index.accurately, | 32 |
| abstract_inverted_index.arrhythmia. | 64 |
| abstract_inverted_index.comparative | 112 |
| abstract_inverted_index.complicated | 52 |
| abstract_inverted_index.development | 96 |
| abstract_inverted_index.identifying | 51 |
| abstract_inverted_index.performance | 103 |
| abstract_inverted_index.demonstrates | 114 |
| abstract_inverted_index.performances | 81 |
| abstract_inverted_index.specificity, | 88 |
| abstract_inverted_index.automatically | 50 |
| abstract_inverted_index.intervention. | 40 |
| abstract_inverted_index.identification | 72, 121 |
| abstract_inverted_index.Electrocardiogram | 21 |
| abstract_inverted_index.deep-learning-based | 68, 119 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5035658922, https://openalex.org/A5057555412 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I74319210, https://openalex.org/I876193797 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.98710358 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |