Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/nar/gkaf138
Gene regulatory networks (GRNs) provide a global representation of how genetic/genomic information is transferred in living systems and are a key component in understanding genome regulation. Single-cell multiome data provide unprecedented opportunities to reconstruct GRNs at fine-grained resolution. However, the inference of GRNs is hindered by insufficient single omic profiles due to the characteristic high loss rate of single-cell sequencing data. In this study, we developed scMultiomeGRN, a deep learning framework to infer transcription factor (TF) regulatory networks via unique integration of single-cell genomic (single-cell RNA sequencing) and epigenomic (single-cell ATAC sequencing) data. We create scMultiomeGRN to elucidate these networks by conceptualizing TF network graph structures. Specifically, we build modality-specific neighbor aggregators and cross-modal attention modules to learn latent representations of TFs from single-cell multi-omics. We demonstrate that scMultiomeGRN outperforms state-of-the-art models on multiple benchmark datasets involved in diseases and health. Via scMultiomeGRN, we identified Alzheimer’s disease-relevant regulatory network of SPI1 and RUNX1 for microglia. In summary, scMultiomeGRN offers a deep learning framework to identify cell type-specific gene regulatory network from single-cell multiome data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/nar/gkaf138
- https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdf
- OA Status
- gold
- Cited By
- 17
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408129839
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408129839Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/nar/gkaf138Digital Object Identifier
- Title
-
Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-27Full publication date if available
- Authors
-
Junlin Xu, Changcheng Lu, Shuting Jin, Yajie Meng, Xiangzheng Fu, Xiangxiang Zeng, Ruth Nussinov, Feixiong ChengList of authors in order
- Landing page
-
https://doi.org/10.1093/nar/gkaf138Publisher landing page
- PDF URL
-
https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdfDirect OA link when available
- Concepts
-
Biology, Gene, Computational biology, Gene regulatory network, Genetics, Cell, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408129839 |
|---|---|
| doi | https://doi.org/10.1093/nar/gkaf138 |
| ids.doi | https://doi.org/10.1093/nar/gkaf138 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40037709 |
| ids.openalex | https://openalex.org/W4408129839 |
| fwci | 45.61005868 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D059010 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Single-Cell Analysis |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D053263 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Gene Regulatory Networks |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | Q000378 |
| mesh[4].descriptor_ui | D014157 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | metabolism |
| mesh[4].descriptor_name | Transcription Factors |
| mesh[5].qualifier_ui | Q000235 |
| mesh[5].descriptor_ui | D014157 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | genetics |
| mesh[5].descriptor_name | Transcription Factors |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D000544 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | Alzheimer Disease |
| mesh[7].qualifier_ui | Q000378 |
| mesh[7].descriptor_ui | D000544 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | metabolism |
| mesh[7].descriptor_name | Alzheimer Disease |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D050676 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | Core Binding Factor Alpha 2 Subunit |
| mesh[9].qualifier_ui | Q000378 |
| mesh[9].descriptor_ui | D050676 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | metabolism |
| mesh[9].descriptor_name | Core Binding Factor Alpha 2 Subunit |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D023281 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Genomics |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000077321 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Deep Learning |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D059010 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Single-Cell Analysis |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D053263 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Gene Regulatory Networks |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | Q000378 |
| mesh[15].descriptor_ui | D014157 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | metabolism |
| mesh[15].descriptor_name | Transcription Factors |
| mesh[16].qualifier_ui | Q000235 |
| mesh[16].descriptor_ui | D014157 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | genetics |
| mesh[16].descriptor_name | Transcription Factors |
| mesh[17].qualifier_ui | Q000235 |
| mesh[17].descriptor_ui | D000544 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | genetics |
| mesh[17].descriptor_name | Alzheimer Disease |
| mesh[18].qualifier_ui | Q000378 |
| mesh[18].descriptor_ui | D000544 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | metabolism |
| mesh[18].descriptor_name | Alzheimer Disease |
| mesh[19].qualifier_ui | Q000235 |
| mesh[19].descriptor_ui | D050676 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | genetics |
| mesh[19].descriptor_name | Core Binding Factor Alpha 2 Subunit |
| mesh[20].qualifier_ui | Q000378 |
| mesh[20].descriptor_ui | D050676 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | metabolism |
| mesh[20].descriptor_name | Core Binding Factor Alpha 2 Subunit |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D023281 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Genomics |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000077321 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Deep Learning |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D053263 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Gene Regulatory Networks |
| mesh[24].qualifier_ui | Q000379 |
| mesh[24].descriptor_ui | D059010 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | methods |
| mesh[24].descriptor_name | Single-Cell Analysis |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | Q000235 |
| mesh[26].descriptor_ui | D014157 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | genetics |
| mesh[26].descriptor_name | Transcription Factors |
| mesh[27].qualifier_ui | Q000378 |
| mesh[27].descriptor_ui | D014157 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | metabolism |
| mesh[27].descriptor_name | Transcription Factors |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000818 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Animals |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D051379 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Mice |
| mesh[30].qualifier_ui | Q000235 |
| mesh[30].descriptor_ui | D050676 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | genetics |
| mesh[30].descriptor_name | Core Binding Factor Alpha 2 Subunit |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D023281 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Genomics |
| mesh[32].qualifier_ui | Q000235 |
| mesh[32].descriptor_ui | D000544 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | genetics |
| mesh[32].descriptor_name | Alzheimer Disease |
| type | article |
| title | Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data |
| awards[0].id | https://openalex.org/G8882569155 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | HHSN261201500003I |
| awards[0].funder_display_name | National Institutes of Health |
| biblio.issue | 5 |
| biblio.volume | 53 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10621 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene Regulatory Network Analysis |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| funders[0].id | https://openalex.org/F4320306085 |
| funders[0].ror | https://ror.org/033jnv181 |
| funders[0].display_name | U.S. Department of Health and Human Services |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| funders[2].id | https://openalex.org/F4320337351 |
| funders[2].ror | https://ror.org/040gcmg81 |
| funders[2].display_name | National Cancer Institute |
| is_xpac | False |
| apc_list.value | 3630 |
| apc_list.currency | USD |
| apc_list.value_usd | 3630 |
| apc_paid.value | 3630 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3630 |
| concepts[0].id | https://openalex.org/C86803240 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9336098432540894 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[0].display_name | Biology |
| concepts[1].id | https://openalex.org/C104317684 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5682222843170166 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[1].display_name | Gene |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5593647956848145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C67339327 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5542958974838257 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1502576 |
| concepts[3].display_name | Gene regulatory network |
| concepts[4].id | https://openalex.org/C54355233 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4904792010784149 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[4].display_name | Genetics |
| concepts[5].id | https://openalex.org/C1491633281 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4846513867378235 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7868 |
| concepts[5].display_name | Cell |
| concepts[6].id | https://openalex.org/C150194340 |
| concepts[6].level | 3 |
| concepts[6].score | 0.32511889934539795 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[6].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/biology |
| keywords[0].score | 0.9336098432540894 |
| keywords[0].display_name | Biology |
| keywords[1].id | https://openalex.org/keywords/gene |
| keywords[1].score | 0.5682222843170166 |
| keywords[1].display_name | Gene |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.5593647956848145 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/gene-regulatory-network |
| keywords[3].score | 0.5542958974838257 |
| keywords[3].display_name | Gene regulatory network |
| keywords[4].id | https://openalex.org/keywords/genetics |
| keywords[4].score | 0.4904792010784149 |
| keywords[4].display_name | Genetics |
| keywords[5].id | https://openalex.org/keywords/cell |
| keywords[5].score | 0.4846513867378235 |
| keywords[5].display_name | Cell |
| keywords[6].id | https://openalex.org/keywords/gene-expression |
| keywords[6].score | 0.32511889934539795 |
| keywords[6].display_name | Gene expression |
| language | en |
| locations[0].id | doi:10.1093/nar/gkaf138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134668137 |
| locations[0].source.issn | 0305-1048, 1362-4954, 1362-4962 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0305-1048 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nucleic Acids Research |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nucleic Acids Research |
| locations[0].landing_page_url | https://doi.org/10.1093/nar/gkaf138 |
| locations[1].id | pmid:40037709 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nucleic acids research |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40037709 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11879466 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Nucleic Acids Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11879466 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5066469263 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1057-1504 |
| authorships[0].author.display_name | Junlin Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I43922553 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China |
| authorships[0].institutions[0].id | https://openalex.org/I43922553 |
| authorships[0].institutions[0].ror | https://ror.org/00e4hrk88 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43922553 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuhan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junlin Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China |
| authorships[1].author.id | https://openalex.org/A5065538319 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9263-8463 |
| authorships[1].author.display_name | Changcheng Lu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China |
| authorships[1].institutions[0].id | https://openalex.org/I16609230 |
| authorships[1].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Changcheng Lu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China |
| authorships[2].author.id | https://openalex.org/A5015486123 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8113-9367 |
| authorships[2].author.display_name | Shuting Jin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43922553 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China |
| authorships[2].institutions[0].id | https://openalex.org/I43922553 |
| authorships[2].institutions[0].ror | https://ror.org/00e4hrk88 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43922553 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shuting Jin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China |
| authorships[3].author.id | https://openalex.org/A5006543131 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2384-1158 |
| authorships[3].author.display_name | Yajie Meng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210119942 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, Hubei 430200, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210119942 |
| authorships[3].institutions[0].ror | https://ror.org/02jgsf398 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210119942 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuhan Textile University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yajie Meng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, Hubei 430200, China |
| authorships[4].author.id | https://openalex.org/A5044283271 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6840-2573 |
| authorships[4].author.display_name | Xiangzheng Fu |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I141568987 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China |
| authorships[4].institutions[0].id | https://openalex.org/I141568987 |
| authorships[4].institutions[0].ror | https://ror.org/0145fw131 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I141568987 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Hong Kong Baptist University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiangzheng Fu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China |
| authorships[5].author.id | https://openalex.org/A5027286013 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6201-0114 |
| authorships[5].author.display_name | Xiangxiang Zeng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China |
| authorships[5].institutions[0].id | https://openalex.org/I16609230 |
| authorships[5].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hunan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiangxiang Zeng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China |
| authorships[6].author.id | https://openalex.org/A5025357844 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8115-6415 |
| authorships[6].author.display_name | Ruth Nussinov |
| authorships[6].countries | IL, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I16391192 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210130649, https://openalex.org/I4210140884 |
| authorships[6].affiliations[1].raw_affiliation_string | Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States |
| authorships[6].institutions[0].id | https://openalex.org/I16391192 |
| authorships[6].institutions[0].ror | https://ror.org/04mhzgx49 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I16391192 |
| authorships[6].institutions[0].country_code | IL |
| authorships[6].institutions[0].display_name | Tel Aviv University |
| authorships[6].institutions[1].id | https://openalex.org/I4210130649 |
| authorships[6].institutions[1].ror | https://ror.org/03v6m3209 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I4210130649, https://openalex.org/I4210140884 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Frederick National Laboratory for Cancer Research |
| authorships[6].institutions[2].id | https://openalex.org/I4210140884 |
| authorships[6].institutions[2].ror | https://ror.org/040gcmg81 |
| authorships[6].institutions[2].type | government |
| authorships[6].institutions[2].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I4210140884 |
| authorships[6].institutions[2].country_code | US |
| authorships[6].institutions[2].display_name | National Cancer Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ruth Nussinov |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel |
| authorships[7].author.id | https://openalex.org/A5021122269 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1736-2847 |
| authorships[7].author.display_name | Feixiong Cheng |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I36373038 |
| authorships[7].affiliations[0].raw_affiliation_string | Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I36373038, https://openalex.org/I58956616 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, United States |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I58956616 |
| authorships[7].affiliations[2].raw_affiliation_string | Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States |
| authorships[7].affiliations[3].institution_ids | https://openalex.org/I36373038 |
| authorships[7].affiliations[3].raw_affiliation_string | Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States |
| authorships[7].institutions[0].id | https://openalex.org/I58956616 |
| authorships[7].institutions[0].ror | https://ror.org/051fd9666 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I58956616 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Case Western Reserve University |
| authorships[7].institutions[1].id | https://openalex.org/I36373038 |
| authorships[7].institutions[1].ror | https://ror.org/02x4b0932 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I1316902750, https://openalex.org/I36373038 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Cleveland Clinic Lerner College of Medicine |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Feixiong Cheng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States, Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, United States, Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2131250617, https://openalex.org/W4233034052, https://openalex.org/W2371030422, https://openalex.org/W4366601060, https://openalex.org/W2364878181, https://openalex.org/W2803323662, https://openalex.org/W3032874291, https://openalex.org/W2005057264, https://openalex.org/W2363156284, https://openalex.org/W2415025170 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/nar/gkaf138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134668137 |
| best_oa_location.source.issn | 0305-1048, 1362-4954, 1362-4962 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0305-1048 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nucleic Acids Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nucleic Acids Research |
| best_oa_location.landing_page_url | https://doi.org/10.1093/nar/gkaf138 |
| primary_location.id | doi:10.1093/nar/gkaf138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134668137 |
| primary_location.source.issn | 0305-1048, 1362-4954, 1362-4962 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0305-1048 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nucleic Acids Research |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/nar/article-pdf/53/5/gkaf138/62262865/gkaf138.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nucleic Acids Research |
| primary_location.landing_page_url | https://doi.org/10.1093/nar/gkaf138 |
| publication_date | 2025-02-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3021933843, https://openalex.org/W2805650303, https://openalex.org/W2555892463, https://openalex.org/W2044525257, https://openalex.org/W2783975438, https://openalex.org/W3033392434, https://openalex.org/W2607076347, https://openalex.org/W2997831639, https://openalex.org/W2757234574, https://openalex.org/W3159699835, https://openalex.org/W3040659066, https://openalex.org/W3082292479, https://openalex.org/W3036206386, https://openalex.org/W4384198561, https://openalex.org/W2561884319, https://openalex.org/W2030165987, https://openalex.org/W2785792383, https://openalex.org/W3132468142, https://openalex.org/W6772442219, https://openalex.org/W2996140569, https://openalex.org/W4399573470, https://openalex.org/W4400409850, https://openalex.org/W4205241347, https://openalex.org/W3186348651, https://openalex.org/W4223557148, https://openalex.org/W2979911343, https://openalex.org/W2889236955, https://openalex.org/W3023082785, https://openalex.org/W2133254377, https://openalex.org/W1966327575, https://openalex.org/W3099179344, https://openalex.org/W3114485724, https://openalex.org/W2949177718, https://openalex.org/W4387142583, https://openalex.org/W3047725782, https://openalex.org/W2901292166, https://openalex.org/W3154818219, https://openalex.org/W2154851992, https://openalex.org/W4290930137, https://openalex.org/W4378530717, https://openalex.org/W4297265143, https://openalex.org/W2076513103, https://openalex.org/W2110503722, https://openalex.org/W2470513050, https://openalex.org/W4386923851, https://openalex.org/W3126620912, https://openalex.org/W4385483291, https://openalex.org/W3134303686, https://openalex.org/W2888188888, https://openalex.org/W3212215126, https://openalex.org/W2801527818, https://openalex.org/W2989061519, https://openalex.org/W3000009418, https://openalex.org/W3104097132 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 6, 20, 68, 160 |
| abstract_inverted_index.In | 62, 156 |
| abstract_inverted_index.TF | 103 |
| abstract_inverted_index.We | 94, 126 |
| abstract_inverted_index.at | 36 |
| abstract_inverted_index.by | 46, 101 |
| abstract_inverted_index.in | 15, 23, 138 |
| abstract_inverted_index.is | 13, 44 |
| abstract_inverted_index.of | 9, 42, 58, 82, 121, 150 |
| abstract_inverted_index.on | 133 |
| abstract_inverted_index.to | 33, 52, 72, 97, 117, 164 |
| abstract_inverted_index.we | 65, 108, 144 |
| abstract_inverted_index.RNA | 86 |
| abstract_inverted_index.TFs | 122 |
| abstract_inverted_index.Via | 142 |
| abstract_inverted_index.and | 18, 88, 113, 140, 152 |
| abstract_inverted_index.are | 19 |
| abstract_inverted_index.due | 51 |
| abstract_inverted_index.for | 154 |
| abstract_inverted_index.how | 10 |
| abstract_inverted_index.key | 21 |
| abstract_inverted_index.the | 40, 53 |
| abstract_inverted_index.via | 79 |
| abstract_inverted_index.(TF) | 76 |
| abstract_inverted_index.ATAC | 91 |
| abstract_inverted_index.GRNs | 35, 43 |
| abstract_inverted_index.Gene | 1 |
| abstract_inverted_index.SPI1 | 151 |
| abstract_inverted_index.cell | 166 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.deep | 69, 161 |
| abstract_inverted_index.from | 123, 171 |
| abstract_inverted_index.gene | 168 |
| abstract_inverted_index.high | 55 |
| abstract_inverted_index.loss | 56 |
| abstract_inverted_index.omic | 49 |
| abstract_inverted_index.rate | 57 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.RUNX1 | 153 |
| abstract_inverted_index.build | 109 |
| abstract_inverted_index.data. | 61, 93, 174 |
| abstract_inverted_index.graph | 105 |
| abstract_inverted_index.infer | 73 |
| abstract_inverted_index.learn | 118 |
| abstract_inverted_index.these | 99 |
| abstract_inverted_index.(GRNs) | 4 |
| abstract_inverted_index.create | 95 |
| abstract_inverted_index.factor | 75 |
| abstract_inverted_index.genome | 25 |
| abstract_inverted_index.global | 7 |
| abstract_inverted_index.latent | 119 |
| abstract_inverted_index.living | 16 |
| abstract_inverted_index.models | 132 |
| abstract_inverted_index.offers | 159 |
| abstract_inverted_index.single | 48 |
| abstract_inverted_index.study, | 64 |
| abstract_inverted_index.unique | 80 |
| abstract_inverted_index.genomic | 84 |
| abstract_inverted_index.health. | 141 |
| abstract_inverted_index.modules | 116 |
| abstract_inverted_index.network | 104, 149, 170 |
| abstract_inverted_index.provide | 5, 30 |
| abstract_inverted_index.systems | 17 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.datasets | 136 |
| abstract_inverted_index.diseases | 139 |
| abstract_inverted_index.hindered | 45 |
| abstract_inverted_index.identify | 165 |
| abstract_inverted_index.involved | 137 |
| abstract_inverted_index.learning | 70, 162 |
| abstract_inverted_index.multiome | 28, 173 |
| abstract_inverted_index.multiple | 134 |
| abstract_inverted_index.neighbor | 111 |
| abstract_inverted_index.networks | 3, 78, 100 |
| abstract_inverted_index.profiles | 50 |
| abstract_inverted_index.summary, | 157 |
| abstract_inverted_index.attention | 115 |
| abstract_inverted_index.benchmark | 135 |
| abstract_inverted_index.component | 22 |
| abstract_inverted_index.developed | 66 |
| abstract_inverted_index.elucidate | 98 |
| abstract_inverted_index.framework | 71, 163 |
| abstract_inverted_index.inference | 41 |
| abstract_inverted_index.epigenomic | 89 |
| abstract_inverted_index.identified | 145 |
| abstract_inverted_index.microglia. | 155 |
| abstract_inverted_index.regulatory | 2, 77, 148, 169 |
| abstract_inverted_index.sequencing | 60 |
| abstract_inverted_index.Single-cell | 27 |
| abstract_inverted_index.aggregators | 112 |
| abstract_inverted_index.cross-modal | 114 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.information | 12 |
| abstract_inverted_index.integration | 81 |
| abstract_inverted_index.outperforms | 130 |
| abstract_inverted_index.reconstruct | 34 |
| abstract_inverted_index.regulation. | 26 |
| abstract_inverted_index.resolution. | 38 |
| abstract_inverted_index.sequencing) | 87, 92 |
| abstract_inverted_index.single-cell | 59, 83, 124, 172 |
| abstract_inverted_index.structures. | 106 |
| abstract_inverted_index.transferred | 14 |
| abstract_inverted_index.(single-cell | 85, 90 |
| abstract_inverted_index.fine-grained | 37 |
| abstract_inverted_index.insufficient | 47 |
| abstract_inverted_index.multi-omics. | 125 |
| abstract_inverted_index.Alzheimer’s | 146 |
| abstract_inverted_index.Specifically, | 107 |
| abstract_inverted_index.opportunities | 32 |
| abstract_inverted_index.scMultiomeGRN | 96, 129, 158 |
| abstract_inverted_index.transcription | 74 |
| abstract_inverted_index.type-specific | 167 |
| abstract_inverted_index.understanding | 24 |
| abstract_inverted_index.unprecedented | 31 |
| abstract_inverted_index.characteristic | 54 |
| abstract_inverted_index.representation | 8 |
| abstract_inverted_index.scMultiomeGRN, | 67, 143 |
| abstract_inverted_index.conceptualizing | 102 |
| abstract_inverted_index.genetic/genomic | 11 |
| abstract_inverted_index.representations | 120 |
| abstract_inverted_index.disease-relevant | 147 |
| abstract_inverted_index.state-of-the-art | 131 |
| abstract_inverted_index.modality-specific | 110 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.9965329 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |