Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.13868
This paper introduces a novel deep-learning method for the automatic detection and segmentation of lung nodules, aimed at advancing the accuracy of early-stage lung cancer diagnosis. The proposed approach leverages a unique "Channel Squeeze U-Structure" that optimizes feature extraction and information integration across multiple semantic levels of the network. This architecture includes three key modules: shallow information processing, channel residual structure, and channel squeeze integration. These modules enhance the model's ability to detect and segment small, imperceptible, or ground-glass nodules, which are critical for early diagnosis. The method demonstrates superior performance in terms of sensitivity, Dice similarity coefficient, precision, and mean Intersection over Union (IoU). Extensive experiments were conducted on the Lung Image Database Consortium (LIDC) dataset using five-fold cross-validation, showing excellent stability and robustness. The results indicate that this approach holds significant potential for improving computer-aided diagnosis systems, providing reliable support for radiologists in clinical practice and aiding in the early detection of lung cancer, especially in resource-limited settings
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.13868
- https://arxiv.org/pdf/2409.13868
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403752750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403752750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.13868Digital Object Identifier
- Title
-
Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-20Full publication date if available
- Authors
-
Mingxiu Sui, Jiacheng Hu, Tong Zhou, Zibo Liu, Luguang Wen, Junliang DuList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.13868Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.13868Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.13868Direct OA link when available
- Concepts
-
Deep learning, Segmentation, Artificial intelligence, Channel (broadcasting), Nodule (geology), Computer science, Pattern recognition (psychology), Geology, Telecommunications, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403752750 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.13868 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.13868 |
| ids.openalex | https://openalex.org/W4403752750 |
| fwci | |
| type | preprint |
| title | Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10202 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.6721000075340271 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Lung Cancer Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.6219000220298767 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7024680376052856 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6651824712753296 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6388077735900879 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C127162648 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6008385419845581 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[3].display_name | Channel (broadcasting) |
| concepts[4].id | https://openalex.org/C2776731575 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5694944858551025 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2916245 |
| concepts[4].display_name | Nodule (geology) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5292895436286926 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42355233430862427 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.25752687454223633 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C76155785 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12881222367286682 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[8].display_name | Telecommunications |
| concepts[9].id | https://openalex.org/C151730666 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11096024513244629 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[9].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7024680376052856 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6651824712753296 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6388077735900879 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/channel |
| keywords[3].score | 0.6008385419845581 |
| keywords[3].display_name | Channel (broadcasting) |
| keywords[4].id | https://openalex.org/keywords/nodule |
| keywords[4].score | 0.5694944858551025 |
| keywords[4].display_name | Nodule (geology) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5292895436286926 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.42355233430862427 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.25752687454223633 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/telecommunications |
| keywords[8].score | 0.12881222367286682 |
| keywords[8].display_name | Telecommunications |
| keywords[9].id | https://openalex.org/keywords/paleontology |
| keywords[9].score | 0.11096024513244629 |
| keywords[9].display_name | Paleontology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.13868 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.13868 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.13868 |
| locations[1].id | doi:10.48550/arxiv.2409.13868 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.13868 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114169760 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mingxiu Sui |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sui, Mingxiu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107194762 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-6588-2868 |
| authorships[1].author.display_name | Jiacheng Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hu, Jiacheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036274737 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3041-6264 |
| authorships[2].author.display_name | Tong Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, Tong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102727988 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8970-2823 |
| authorships[3].author.display_name | Zibo Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Zibo |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5006436170 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-2868-3977 |
| authorships[4].author.display_name | Luguang Wen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wen, Likang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010332378 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2794-2327 |
| authorships[5].author.display_name | Junliang Du |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Du, Junliang |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.13868 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-25T00:00:00 |
| display_name | Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10202 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.6721000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Lung Cancer Diagnosis and Treatment |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W1964806738, https://openalex.org/W4243779904, https://openalex.org/W2332066440, https://openalex.org/W4377691549, https://openalex.org/W2056973590, https://openalex.org/W2611989081, https://openalex.org/W3164196203, https://openalex.org/W2731899572, https://openalex.org/W4230611425 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.13868 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.13868 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.13868 |
| primary_location.id | pmh:oai:arXiv.org:2409.13868 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.13868 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.13868 |
| publication_date | 2024-09-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 30 |
| abstract_inverted_index.at | 17 |
| abstract_inverted_index.in | 91, 144, 149, 157 |
| abstract_inverted_index.of | 13, 21, 46, 93, 153 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 71 |
| abstract_inverted_index.The | 26, 86, 125 |
| abstract_inverted_index.and | 11, 39, 61, 73, 99, 123, 147 |
| abstract_inverted_index.are | 81 |
| abstract_inverted_index.for | 7, 83, 134, 142 |
| abstract_inverted_index.key | 53 |
| abstract_inverted_index.the | 8, 19, 47, 68, 110, 150 |
| abstract_inverted_index.Dice | 95 |
| abstract_inverted_index.Lung | 111 |
| abstract_inverted_index.This | 0, 49 |
| abstract_inverted_index.lung | 14, 23, 154 |
| abstract_inverted_index.mean | 100 |
| abstract_inverted_index.over | 102 |
| abstract_inverted_index.that | 35, 128 |
| abstract_inverted_index.this | 129 |
| abstract_inverted_index.were | 107 |
| abstract_inverted_index.Image | 112 |
| abstract_inverted_index.These | 65 |
| abstract_inverted_index.Union | 103 |
| abstract_inverted_index.aimed | 16 |
| abstract_inverted_index.early | 84, 151 |
| abstract_inverted_index.holds | 131 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.terms | 92 |
| abstract_inverted_index.three | 52 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.(IoU). | 104 |
| abstract_inverted_index.(LIDC) | 115 |
| abstract_inverted_index.across | 42 |
| abstract_inverted_index.aiding | 148 |
| abstract_inverted_index.cancer | 24 |
| abstract_inverted_index.detect | 72 |
| abstract_inverted_index.levels | 45 |
| abstract_inverted_index.method | 6, 87 |
| abstract_inverted_index.small, | 75 |
| abstract_inverted_index.unique | 31 |
| abstract_inverted_index.Squeeze | 33 |
| abstract_inverted_index.ability | 70 |
| abstract_inverted_index.cancer, | 155 |
| abstract_inverted_index.channel | 58, 62 |
| abstract_inverted_index.dataset | 116 |
| abstract_inverted_index.enhance | 67 |
| abstract_inverted_index.feature | 37 |
| abstract_inverted_index.model's | 69 |
| abstract_inverted_index.modules | 66 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.segment | 74 |
| abstract_inverted_index.shallow | 55 |
| abstract_inverted_index.showing | 120 |
| abstract_inverted_index.squeeze | 63 |
| abstract_inverted_index.support | 141 |
| abstract_inverted_index."Channel | 32 |
| abstract_inverted_index.Database | 113 |
| abstract_inverted_index.accuracy | 20 |
| abstract_inverted_index.approach | 28, 130 |
| abstract_inverted_index.clinical | 145 |
| abstract_inverted_index.critical | 82 |
| abstract_inverted_index.includes | 51 |
| abstract_inverted_index.indicate | 127 |
| abstract_inverted_index.modules: | 54 |
| abstract_inverted_index.multiple | 43 |
| abstract_inverted_index.network. | 48 |
| abstract_inverted_index.nodules, | 15, 79 |
| abstract_inverted_index.practice | 146 |
| abstract_inverted_index.proposed | 27 |
| abstract_inverted_index.reliable | 140 |
| abstract_inverted_index.residual | 59 |
| abstract_inverted_index.semantic | 44 |
| abstract_inverted_index.settings | 159 |
| abstract_inverted_index.superior | 89 |
| abstract_inverted_index.systems, | 138 |
| abstract_inverted_index.Extensive | 105 |
| abstract_inverted_index.advancing | 18 |
| abstract_inverted_index.automatic | 9 |
| abstract_inverted_index.conducted | 108 |
| abstract_inverted_index.detection | 10, 152 |
| abstract_inverted_index.diagnosis | 137 |
| abstract_inverted_index.excellent | 121 |
| abstract_inverted_index.five-fold | 118 |
| abstract_inverted_index.improving | 135 |
| abstract_inverted_index.leverages | 29 |
| abstract_inverted_index.optimizes | 36 |
| abstract_inverted_index.potential | 133 |
| abstract_inverted_index.providing | 139 |
| abstract_inverted_index.stability | 122 |
| abstract_inverted_index.Consortium | 114 |
| abstract_inverted_index.diagnosis. | 25, 85 |
| abstract_inverted_index.especially | 156 |
| abstract_inverted_index.extraction | 38 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.precision, | 98 |
| abstract_inverted_index.similarity | 96 |
| abstract_inverted_index.structure, | 60 |
| abstract_inverted_index.early-stage | 22 |
| abstract_inverted_index.experiments | 106 |
| abstract_inverted_index.information | 40, 56 |
| abstract_inverted_index.integration | 41 |
| abstract_inverted_index.performance | 90 |
| abstract_inverted_index.processing, | 57 |
| abstract_inverted_index.robustness. | 124 |
| abstract_inverted_index.significant | 132 |
| abstract_inverted_index.Intersection | 101 |
| abstract_inverted_index.U-Structure" | 34 |
| abstract_inverted_index.architecture | 50 |
| abstract_inverted_index.coefficient, | 97 |
| abstract_inverted_index.demonstrates | 88 |
| abstract_inverted_index.ground-glass | 78 |
| abstract_inverted_index.integration. | 64 |
| abstract_inverted_index.radiologists | 143 |
| abstract_inverted_index.segmentation | 12 |
| abstract_inverted_index.sensitivity, | 94 |
| abstract_inverted_index.deep-learning | 5 |
| abstract_inverted_index.computer-aided | 136 |
| abstract_inverted_index.imperceptible, | 76 |
| abstract_inverted_index.resource-limited | 158 |
| abstract_inverted_index.cross-validation, | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |