Deep Learning Based Fall Recognition and Forecasting for Reconfigurable Stair-Accessing Service Robots Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/math12091312
This paper presents a comprehensive study on fall recognition and forecasting for reconfigurable stair-accessing robots by leveraging deep learning techniques. The proposed framework integrates machine learning algorithms and recurrent neural networks (RNNs), specifically Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), for fall detection of service robots on staircases. The reconfigurable stair-accessing robot sTetro serves as the platform, and the fall data required for training models are generated in a simulation environment. The two machine learning algorithms are compared and their effectiveness on the fall recognition task is reported. The results indicate that the BiLSTM model effectively classifies falls with a median categorical accuracy of 94.10% in simulation and 90.02% with limited experiments. Additionally, the BiLSTM model can be used for forecasting, which is practically valuable for making decisions well before the onset of a free fall. This study contributes insights into the design and implementation of fall detection systems for service robots used to navigate staircases through deep learning approaches. Our experimental and simulation data, along with the simulation steps, are available for reference and analysis via the shared link.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math12091312
- https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629
- OA Status
- gold
- Cited By
- 4
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4395674221
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4395674221Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math12091312Digital Object Identifier
- Title
-
Deep Learning Based Fall Recognition and Forecasting for Reconfigurable Stair-Accessing Service RobotsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-25Full publication date if available
- Authors
-
Jun Hua Ong, Abdullah Aamir Hayat, Braulio Félix Gómez, Mohan Rajesh Elara, Kristin L. WoodList of authors in order
- Landing page
-
https://doi.org/10.3390/math12091312Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Robot, Machine learning, Deep learning, Categorical variable, Task (project management), Artificial neural network, Service (business), Engineering, Systems engineering, Economy, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4395674221 |
|---|---|
| doi | https://doi.org/10.3390/math12091312 |
| ids.doi | https://doi.org/10.3390/math12091312 |
| ids.openalex | https://openalex.org/W4395674221 |
| fwci | 2.12063024 |
| type | article |
| title | Deep Learning Based Fall Recognition and Forecasting for Reconfigurable Stair-Accessing Service Robots |
| awards[0].id | https://openalex.org/G6083374422 |
| awards[0].funder_id | https://openalex.org/F4320320696 |
| awards[0].display_name | |
| awards[0].funder_award_id | M21K1a0104 |
| awards[0].funder_display_name | Agency for Science, Technology and Research |
| biblio.issue | 9 |
| biblio.volume | 12 |
| biblio.last_page | 1312 |
| biblio.first_page | 1312 |
| topics[0].id | https://openalex.org/T10444 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Context-Aware Activity Recognition Systems |
| topics[1].id | https://openalex.org/T12784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Modular Robots and Swarm Intelligence |
| topics[2].id | https://openalex.org/T11192 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9769999980926514 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Underwater Vehicles and Communication Systems |
| funders[0].id | https://openalex.org/F4320320696 |
| funders[0].ror | https://ror.org/036wvzt09 |
| funders[0].display_name | Agency for Science, Technology and Research |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7440217137336731 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6889709830284119 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C90509273 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6612981557846069 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[2].display_name | Robot |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6359361410140991 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6170865893363953 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C5274069 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5712075233459473 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[5].display_name | Categorical variable |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5031625628471375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4833669066429138 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2780378061 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4626866579055786 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[8].display_name | Service (business) |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15344282984733582 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C201995342 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09230777621269226 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[10].display_name | Systems engineering |
| concepts[11].id | https://openalex.org/C136264566 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q159810 |
| concepts[11].display_name | Economy |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7440217137336731 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6889709830284119 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/robot |
| keywords[2].score | 0.6612981557846069 |
| keywords[2].display_name | Robot |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6359361410140991 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.6170865893363953 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/categorical-variable |
| keywords[5].score | 0.5712075233459473 |
| keywords[5].display_name | Categorical variable |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.5031625628471375 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4833669066429138 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/service |
| keywords[8].score | 0.4626866579055786 |
| keywords[8].display_name | Service (business) |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.15344282984733582 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/systems-engineering |
| keywords[10].score | 0.09230777621269226 |
| keywords[10].display_name | Systems engineering |
| language | en |
| locations[0].id | doi:10.3390/math12091312 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math12091312 |
| locations[1].id | pmh:oai:doaj.org/article:6ce836524a89467e8cb5704c765b12cc |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 12, Iss 9, p 1312 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/6ce836524a89467e8cb5704c765b12cc |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5087424532 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8391-514X |
| authorships[0].author.display_name | Jun Hua Ong |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[0].affiliations[0].raw_affiliation_string | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[0].institutions[0].id | https://openalex.org/I152815399 |
| authorships[0].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun Hua Ong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[1].author.id | https://openalex.org/A5086990384 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6141-4600 |
| authorships[1].author.display_name | Abdullah Aamir Hayat |
| authorships[1].countries | SG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[1].affiliations[0].raw_affiliation_string | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[1].institutions[0].id | https://openalex.org/I152815399 |
| authorships[1].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[1].institutions[0].country_code | SG |
| authorships[1].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdullah Aamir Hayat |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[2].author.id | https://openalex.org/A5068621996 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1425-2319 |
| authorships[2].author.display_name | Braulio Félix Gómez |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[2].affiliations[0].raw_affiliation_string | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I152815399 |
| authorships[2].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Braulio Felix Gomez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[3].author.id | https://openalex.org/A5041057723 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6504-1530 |
| authorships[3].author.display_name | Mohan Rajesh Elara |
| authorships[3].countries | SG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[3].affiliations[0].raw_affiliation_string | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[3].institutions[0].id | https://openalex.org/I152815399 |
| authorships[3].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[3].institutions[0].country_code | SG |
| authorships[3].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohan Rajesh Elara |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Robotics and Automation Research (ROAR) Lab, Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore |
| authorships[4].author.id | https://openalex.org/A5033426375 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0553-5528 |
| authorships[4].author.display_name | Kristin L. Wood |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I921990950 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Engineering, Design and Computing, University of Colorado Denver, 1200 Larimer St, Ste. 3034, Denver, CO 80204, USA |
| authorships[4].institutions[0].id | https://openalex.org/I921990950 |
| authorships[4].institutions[0].ror | https://ror.org/02hh7en24 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I921990950 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Colorado Denver |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kristin Lee Wood |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Engineering, Design and Computing, University of Colorado Denver, 1200 Larimer St, Ste. 3034, Denver, CO 80204, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Based Fall Recognition and Forecasting for Reconfigurable Stair-Accessing Service Robots |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10444 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Context-Aware Activity Recognition Systems |
| related_works | https://openalex.org/W4386799044, https://openalex.org/W2773208253, https://openalex.org/W2560646951, https://openalex.org/W4297454206, https://openalex.org/W65104662, https://openalex.org/W1871748041, https://openalex.org/W2362286668, https://openalex.org/W2133382151, https://openalex.org/W3213722473, https://openalex.org/W2110944602 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math12091312 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math12091312 |
| primary_location.id | doi:10.3390/math12091312 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/12/9/1312/pdf?version=1714055629 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math12091312 |
| publication_date | 2024-04-25 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4293053882, https://openalex.org/W3042983365, https://openalex.org/W2913456929, https://openalex.org/W3196711103, https://openalex.org/W1500216732, https://openalex.org/W3045167461, https://openalex.org/W2133032823, https://openalex.org/W1989099984, https://openalex.org/W3212068445, https://openalex.org/W4392157442, https://openalex.org/W6770127835, https://openalex.org/W3191137513, https://openalex.org/W2969864035, https://openalex.org/W3015746647, https://openalex.org/W3214868319, https://openalex.org/W4240495026, https://openalex.org/W2724727449, https://openalex.org/W2163045070, https://openalex.org/W2594864412, https://openalex.org/W2071518995, https://openalex.org/W4237508292, https://openalex.org/W2777292639, https://openalex.org/W3166508367, https://openalex.org/W3145350696, https://openalex.org/W3008674845, https://openalex.org/W3088162569, https://openalex.org/W2912258320, https://openalex.org/W3132689169, https://openalex.org/W2324604276, https://openalex.org/W3083408317, https://openalex.org/W4380680196, https://openalex.org/W2910081881, https://openalex.org/W3153837358, https://openalex.org/W3101028550, https://openalex.org/W2804907753, https://openalex.org/W2909645133, https://openalex.org/W2896783937, https://openalex.org/W4281770078, https://openalex.org/W3207023435, https://openalex.org/W4317738585, https://openalex.org/W3138661263, https://openalex.org/W4220935002, https://openalex.org/W4309009981, https://openalex.org/W2262977212, https://openalex.org/W4387682182, https://openalex.org/W4391019920, https://openalex.org/W4380881403, https://openalex.org/W4206925489, https://openalex.org/W4200197642, https://openalex.org/W4285102557, https://openalex.org/W2999717467, https://openalex.org/W4285291714, https://openalex.org/W4318344253, https://openalex.org/W2014503261, https://openalex.org/W2985701339 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 3, 69, 100, 134 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.be | 118 |
| abstract_inverted_index.by | 15 |
| abstract_inverted_index.in | 68, 106 |
| abstract_inverted_index.is | 87, 123 |
| abstract_inverted_index.of | 44, 104, 133, 146 |
| abstract_inverted_index.on | 6, 47, 82 |
| abstract_inverted_index.to | 154 |
| abstract_inverted_index.Our | 161 |
| abstract_inverted_index.The | 20, 49, 72, 89 |
| abstract_inverted_index.and | 9, 27, 37, 58, 79, 108, 144, 163, 175 |
| abstract_inverted_index.are | 66, 77, 171 |
| abstract_inverted_index.can | 117 |
| abstract_inverted_index.for | 11, 41, 63, 120, 126, 150, 173 |
| abstract_inverted_index.the | 56, 59, 83, 93, 114, 131, 142, 168, 178 |
| abstract_inverted_index.two | 73 |
| abstract_inverted_index.via | 177 |
| abstract_inverted_index.LSTM | 39 |
| abstract_inverted_index.Long | 33 |
| abstract_inverted_index.This | 0, 137 |
| abstract_inverted_index.data | 61 |
| abstract_inverted_index.deep | 17, 158 |
| abstract_inverted_index.fall | 7, 42, 60, 84, 147 |
| abstract_inverted_index.free | 135 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.task | 86 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.used | 119, 153 |
| abstract_inverted_index.well | 129 |
| abstract_inverted_index.with | 99, 110, 167 |
| abstract_inverted_index.along | 166 |
| abstract_inverted_index.data, | 165 |
| abstract_inverted_index.fall. | 136 |
| abstract_inverted_index.falls | 98 |
| abstract_inverted_index.link. | 180 |
| abstract_inverted_index.model | 95, 116 |
| abstract_inverted_index.onset | 132 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.robot | 52 |
| abstract_inverted_index.study | 5, 138 |
| abstract_inverted_index.their | 80 |
| abstract_inverted_index.which | 122 |
| abstract_inverted_index.(LSTM) | 36 |
| abstract_inverted_index.90.02% | 109 |
| abstract_inverted_index.94.10% | 105 |
| abstract_inverted_index.BiLSTM | 94, 115 |
| abstract_inverted_index.Memory | 35 |
| abstract_inverted_index.before | 130 |
| abstract_inverted_index.design | 143 |
| abstract_inverted_index.making | 127 |
| abstract_inverted_index.median | 101 |
| abstract_inverted_index.models | 65 |
| abstract_inverted_index.neural | 29 |
| abstract_inverted_index.robots | 14, 46, 152 |
| abstract_inverted_index.sTetro | 53 |
| abstract_inverted_index.serves | 54 |
| abstract_inverted_index.shared | 179 |
| abstract_inverted_index.steps, | 170 |
| abstract_inverted_index.(RNNs), | 31 |
| abstract_inverted_index.limited | 111 |
| abstract_inverted_index.machine | 24, 74 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.service | 45, 151 |
| abstract_inverted_index.systems | 149 |
| abstract_inverted_index.through | 157 |
| abstract_inverted_index.accuracy | 103 |
| abstract_inverted_index.analysis | 176 |
| abstract_inverted_index.compared | 78 |
| abstract_inverted_index.indicate | 91 |
| abstract_inverted_index.insights | 140 |
| abstract_inverted_index.learning | 18, 25, 75, 159 |
| abstract_inverted_index.navigate | 155 |
| abstract_inverted_index.networks | 30 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 21 |
| abstract_inverted_index.required | 62 |
| abstract_inverted_index.training | 64 |
| abstract_inverted_index.valuable | 125 |
| abstract_inverted_index.(BiLSTM), | 40 |
| abstract_inverted_index.available | 172 |
| abstract_inverted_index.decisions | 128 |
| abstract_inverted_index.detection | 43, 148 |
| abstract_inverted_index.framework | 22 |
| abstract_inverted_index.generated | 67 |
| abstract_inverted_index.platform, | 57 |
| abstract_inverted_index.recurrent | 28 |
| abstract_inverted_index.reference | 174 |
| abstract_inverted_index.reported. | 88 |
| abstract_inverted_index.Short-Term | 34 |
| abstract_inverted_index.algorithms | 26, 76 |
| abstract_inverted_index.classifies | 97 |
| abstract_inverted_index.integrates | 23 |
| abstract_inverted_index.leveraging | 16 |
| abstract_inverted_index.simulation | 70, 107, 164, 169 |
| abstract_inverted_index.staircases | 156 |
| abstract_inverted_index.approaches. | 160 |
| abstract_inverted_index.categorical | 102 |
| abstract_inverted_index.contributes | 139 |
| abstract_inverted_index.effectively | 96 |
| abstract_inverted_index.forecasting | 10 |
| abstract_inverted_index.practically | 124 |
| abstract_inverted_index.recognition | 8, 85 |
| abstract_inverted_index.staircases. | 48 |
| abstract_inverted_index.techniques. | 19 |
| abstract_inverted_index.environment. | 71 |
| abstract_inverted_index.experimental | 162 |
| abstract_inverted_index.experiments. | 112 |
| abstract_inverted_index.forecasting, | 121 |
| abstract_inverted_index.specifically | 32 |
| abstract_inverted_index.Additionally, | 113 |
| abstract_inverted_index.Bidirectional | 38 |
| abstract_inverted_index.comprehensive | 4 |
| abstract_inverted_index.effectiveness | 81 |
| abstract_inverted_index.implementation | 145 |
| abstract_inverted_index.reconfigurable | 12, 50 |
| abstract_inverted_index.stair-accessing | 13, 51 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5086990384 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I152815399 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.81382515 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |