Deep Learning-Based Feature Extraction for Speech Emotion Recognition Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.46647/ijetms.2024.v08i03.020
Emotion recognition from speech signals is an important and challenging component of Human-Computer Interaction. In the field of speech emotion recognition (SER), many techniques have been utilized to extract emotions from speech signals, including many well-established speech analysis and classification techniques. This model can be built by using various methods such as RNN, SVM, deep learning, cepstral coefficients, and various other methods, out of which SVM normally gives us the highest accuracy. We propose a model that can identify emotions present in the speech, which can be identified by various parameters such as pitch, speaking rate, speech time, and frequency patterns. Emotion detection in digitized speech contains 3 components: Signal processing, Feature extraction, and Classification. The model first tries to remove the background noises then extract the features present in the speech and classify it into a single emotion. This model is capable of identifying seven different emotions that can be found in human speech. We can use different classifiers like GMM and HMM to classify features such as Spectral Subtraction, Wiener Filtering, Adaptive Filtering, and Deep Learning Techniques. This model can be used in various fields such as healthcare, security, psychology, medicine, education, and entertainment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.46647/ijetms.2024.v08i03.020
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403550757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403550757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46647/ijetms.2024.v08i03.020Digital Object Identifier
- Title
-
Deep Learning-Based Feature Extraction for Speech Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Dharmendra Kumar Roy, Naga Venkata Gopi Kumbha, Harender Sankhla, Gaurav Raj, Bashetty AkhileshList of authors in order
- Landing page
-
https://doi.org/10.46647/ijetms.2024.v08i03.020Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.46647/ijetms.2024.v08i03.020Direct OA link when available
- Concepts
-
Speech recognition, Emotion recognition, Computer science, Feature (linguistics), Feature extraction, Artificial intelligence, Psychology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403550757 |
|---|---|
| doi | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| ids.doi | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| ids.openalex | https://openalex.org/W4403550757 |
| fwci | 0.0 |
| type | article |
| title | Deep Learning-Based Feature Extraction for Speech Emotion Recognition |
| biblio.issue | 3 |
| biblio.volume | 8 |
| biblio.last_page | 174 |
| biblio.first_page | 166 |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.7402999997138977 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T10201 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7193999886512756 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech Recognition and Synthesis |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7159000039100647 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C28490314 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6389463543891907 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[0].display_name | Speech recognition |
| concepts[1].id | https://openalex.org/C2777438025 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5992636680603027 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1339090 |
| concepts[1].display_name | Emotion recognition |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5534437894821167 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.506923258304596 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C52622490 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49605831503868103 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[4].display_name | Feature extraction |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42593586444854736 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3251059055328369 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.131745845079422 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/speech-recognition |
| keywords[0].score | 0.6389463543891907 |
| keywords[0].display_name | Speech recognition |
| keywords[1].id | https://openalex.org/keywords/emotion-recognition |
| keywords[1].score | 0.5992636680603027 |
| keywords[1].display_name | Emotion recognition |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5534437894821167 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.506923258304596 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/feature-extraction |
| keywords[4].score | 0.49605831503868103 |
| keywords[4].display_name | Feature extraction |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.42593586444854736 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.3251059055328369 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/linguistics |
| keywords[7].score | 0.131745845079422 |
| keywords[7].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.46647/ijetms.2024.v08i03.020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210180963 |
| locations[0].source.issn | 2581-4621 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2581-4621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Engineering Technology and Management Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | international journal of engineering technology and management sciences |
| locations[0].landing_page_url | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064612517 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dharmendra Kumar Roy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Dharmendra Kumar Roy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5114326315 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Naga Venkata Gopi Kumbha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Naga Venkata Gopi Kumbha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114326316 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Harender Sankhla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Harender Sankhla |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069394869 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9806-5923 |
| authorships[3].author.display_name | Gaurav Raj |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None G. Teja Alex Raj |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114326317 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Bashetty Akhilesh |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | None Bashetty Akhilesh |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning-Based Feature Extraction for Speech Emotion Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.7402999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W3147584709, https://openalex.org/W2977677679, https://openalex.org/W1992327129, https://openalex.org/W2381986121, https://openalex.org/W2370918718, https://openalex.org/W2256933480, https://openalex.org/W2027854990, https://openalex.org/W2370081953, https://openalex.org/W3126677997, https://openalex.org/W1610857240 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.46647/ijetms.2024.v08i03.020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210180963 |
| best_oa_location.source.issn | 2581-4621 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2581-4621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Engineering Technology and Management Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | international journal of engineering technology and management sciences |
| best_oa_location.landing_page_url | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| primary_location.id | doi:10.46647/ijetms.2024.v08i03.020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210180963 |
| primary_location.source.issn | 2581-4621 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2581-4621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Engineering Technology and Management Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | international journal of engineering technology and management sciences |
| primary_location.landing_page_url | https://doi.org/10.46647/ijetms.2024.v08i03.020 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 107 |
| abstract_inverted_index.a | 74, 136 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.We | 72, 155 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.as | 51, 92, 168, 188 |
| abstract_inverted_index.be | 44, 86, 150, 182 |
| abstract_inverted_index.by | 46, 88 |
| abstract_inverted_index.in | 81, 103, 129, 152, 184 |
| abstract_inverted_index.is | 5, 141 |
| abstract_inverted_index.it | 134 |
| abstract_inverted_index.of | 11, 17, 63, 143 |
| abstract_inverted_index.to | 27, 119, 164 |
| abstract_inverted_index.us | 68 |
| abstract_inverted_index.GMM | 161 |
| abstract_inverted_index.HMM | 163 |
| abstract_inverted_index.SVM | 65 |
| abstract_inverted_index.The | 115 |
| abstract_inverted_index.and | 8, 38, 58, 98, 113, 132, 162, 175, 194 |
| abstract_inverted_index.can | 43, 77, 85, 149, 156, 181 |
| abstract_inverted_index.out | 62 |
| abstract_inverted_index.the | 15, 69, 82, 121, 126, 130 |
| abstract_inverted_index.use | 157 |
| abstract_inverted_index.Deep | 176 |
| abstract_inverted_index.RNN, | 52 |
| abstract_inverted_index.SVM, | 53 |
| abstract_inverted_index.This | 41, 139, 179 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.deep | 54 |
| abstract_inverted_index.from | 2, 30 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.into | 135 |
| abstract_inverted_index.like | 160 |
| abstract_inverted_index.many | 22, 34 |
| abstract_inverted_index.such | 50, 91, 167, 187 |
| abstract_inverted_index.that | 76, 148 |
| abstract_inverted_index.then | 124 |
| abstract_inverted_index.used | 183 |
| abstract_inverted_index.built | 45 |
| abstract_inverted_index.field | 16 |
| abstract_inverted_index.first | 117 |
| abstract_inverted_index.found | 151 |
| abstract_inverted_index.gives | 67 |
| abstract_inverted_index.human | 153 |
| abstract_inverted_index.model | 42, 75, 116, 140, 180 |
| abstract_inverted_index.other | 60 |
| abstract_inverted_index.rate, | 95 |
| abstract_inverted_index.seven | 145 |
| abstract_inverted_index.time, | 97 |
| abstract_inverted_index.tries | 118 |
| abstract_inverted_index.using | 47 |
| abstract_inverted_index.which | 64, 84 |
| abstract_inverted_index.(SER), | 21 |
| abstract_inverted_index.Signal | 109 |
| abstract_inverted_index.Wiener | 171 |
| abstract_inverted_index.fields | 186 |
| abstract_inverted_index.noises | 123 |
| abstract_inverted_index.pitch, | 93 |
| abstract_inverted_index.remove | 120 |
| abstract_inverted_index.single | 137 |
| abstract_inverted_index.speech | 3, 18, 31, 36, 96, 105, 131 |
| abstract_inverted_index.Emotion | 0, 101 |
| abstract_inverted_index.Feature | 111 |
| abstract_inverted_index.capable | 142 |
| abstract_inverted_index.emotion | 19 |
| abstract_inverted_index.extract | 28, 125 |
| abstract_inverted_index.highest | 70 |
| abstract_inverted_index.methods | 49 |
| abstract_inverted_index.present | 80, 128 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.signals | 4 |
| abstract_inverted_index.speech, | 83 |
| abstract_inverted_index.speech. | 154 |
| abstract_inverted_index.various | 48, 59, 89, 185 |
| abstract_inverted_index.Adaptive | 173 |
| abstract_inverted_index.Learning | 177 |
| abstract_inverted_index.Spectral | 169 |
| abstract_inverted_index.analysis | 37 |
| abstract_inverted_index.cepstral | 56 |
| abstract_inverted_index.classify | 133, 165 |
| abstract_inverted_index.contains | 106 |
| abstract_inverted_index.emotion. | 138 |
| abstract_inverted_index.emotions | 29, 79, 147 |
| abstract_inverted_index.features | 127, 166 |
| abstract_inverted_index.identify | 78 |
| abstract_inverted_index.methods, | 61 |
| abstract_inverted_index.normally | 66 |
| abstract_inverted_index.signals, | 32 |
| abstract_inverted_index.speaking | 94 |
| abstract_inverted_index.utilized | 26 |
| abstract_inverted_index.accuracy. | 71 |
| abstract_inverted_index.component | 10 |
| abstract_inverted_index.detection | 102 |
| abstract_inverted_index.different | 146, 158 |
| abstract_inverted_index.digitized | 104 |
| abstract_inverted_index.frequency | 99 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.including | 33 |
| abstract_inverted_index.learning, | 55 |
| abstract_inverted_index.medicine, | 192 |
| abstract_inverted_index.patterns. | 100 |
| abstract_inverted_index.security, | 190 |
| abstract_inverted_index.Filtering, | 172, 174 |
| abstract_inverted_index.background | 122 |
| abstract_inverted_index.education, | 193 |
| abstract_inverted_index.identified | 87 |
| abstract_inverted_index.parameters | 90 |
| abstract_inverted_index.techniques | 23 |
| abstract_inverted_index.Techniques. | 178 |
| abstract_inverted_index.challenging | 9 |
| abstract_inverted_index.classifiers | 159 |
| abstract_inverted_index.components: | 108 |
| abstract_inverted_index.extraction, | 112 |
| abstract_inverted_index.healthcare, | 189 |
| abstract_inverted_index.identifying | 144 |
| abstract_inverted_index.processing, | 110 |
| abstract_inverted_index.psychology, | 191 |
| abstract_inverted_index.recognition | 1, 20 |
| abstract_inverted_index.techniques. | 40 |
| abstract_inverted_index.Interaction. | 13 |
| abstract_inverted_index.Subtraction, | 170 |
| abstract_inverted_index.coefficients, | 57 |
| abstract_inverted_index.Human-Computer | 12 |
| abstract_inverted_index.classification | 39 |
| abstract_inverted_index.entertainment. | 195 |
| abstract_inverted_index.Classification. | 114 |
| abstract_inverted_index.well-established | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.25848871 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |