Deep Learning-Based Fish Health Monitoring and Diagnosis: A Review Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3621487
Fish in aquaculture systems face health challenges influenced by aging, water quality, and environmental conditions. These issues affect critical components like feeding and filtration, potentially reducing efficiency and causing system failure. Effective Health Monitoring and Diagnosis (HMD) relies on high-quality features such as behavior, physical condition, feeding habits, and water parameters. However, traditional hand-crafted approaches often fail to capture the complex and nonlinear interactions between biological and environmental factors, limiting their adaptability to sudden changes in water conditions or disease outbreaks. This gap motivates the use of intelligent, multimodal learning strategies that integrate diverse data sources for more robust and reliable analysis. Advances in computing power, large datasets, and sophisticated algorithms have made deep learning (DL) a transformative tool in this field. By combining DL with multimodal data integration, it becomes possible to learn high-level representations directly from heterogeneous inputs such as water quality measures, behavioral signals, and visual observations, thereby overcoming the limitations of conventional feature-based methods. This paper reviews DL-based multimodal approaches in aquaculture HMD, comparing recent techniques, their strengths, and limitations. We also discuss future directions, emphasizing multimodal data fusion to enhance DL-driven health monitoring. This review provides a concise resource for researchers and practitioners aiming to advance aquaculture health monitoring.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3621487
- OA Status
- gold
- References
- 83
- OpenAlex ID
- https://openalex.org/W4415179063
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415179063Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3621487Digital Object Identifier
- Title
-
Deep Learning-Based Fish Health Monitoring and Diagnosis: A ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Lazhar Khriji, Abdelmalek Kouadri, Majdi MansouriList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3621487Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3621487Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
83Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415179063 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3621487 |
| ids.doi | https://doi.org/10.1109/access.2025.3621487 |
| ids.openalex | https://openalex.org/W4415179063 |
| fwci | 0.0 |
| type | review |
| title | Deep Learning-Based Fish Health Monitoring and Diagnosis: A Review |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 181616 |
| biblio.first_page | 181599 |
| topics[0].id | https://openalex.org/T12697 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9749000072479248 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Water Quality Monitoring Technologies |
| topics[1].id | https://openalex.org/T14249 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9013000130653381 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2311 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Water Quality Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3621487 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3621487 |
| locations[1].id | pmh:oai:doaj.org/article:e728f7841bf34cb7913edd2f4ea4dea9 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 181599-181616 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e728f7841bf34cb7913edd2f4ea4dea9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058097480 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1434-5689 |
| authorships[0].author.display_name | Lazhar Khriji |
| authorships[0].countries | OM |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47818738 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman |
| authorships[0].institutions[0].id | https://openalex.org/I47818738 |
| authorships[0].institutions[0].ror | https://ror.org/04wq8zb47 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47818738 |
| authorships[0].institutions[0].country_code | OM |
| authorships[0].institutions[0].display_name | Sultan Qaboos University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lazhar Kheriji |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman |
| authorships[1].author.id | https://openalex.org/A5057372051 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3201-2500 |
| authorships[1].author.display_name | Abdelmalek Kouadri |
| authorships[1].countries | DZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3121272148 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Electrical and Electronics Engineering, Signals and Systems Laboratory, University M’Hamed Bougara of Boumerdes, Boumerdes, Algeria |
| authorships[1].institutions[0].id | https://openalex.org/I3121272148 |
| authorships[1].institutions[0].ror | https://ror.org/02dveg925 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3121272148 |
| authorships[1].institutions[0].country_code | DZ |
| authorships[1].institutions[0].display_name | University of Boumerdes |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abdelmalek Kouadri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Electrical and Electronics Engineering, Signals and Systems Laboratory, University M’Hamed Bougara of Boumerdes, Boumerdes, Algeria |
| authorships[2].author.id | https://openalex.org/A5043479229 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6390-4304 |
| authorships[2].author.display_name | Majdi Mansouri |
| authorships[2].countries | OM |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47818738 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman |
| authorships[2].institutions[0].id | https://openalex.org/I47818738 |
| authorships[2].institutions[0].ror | https://ror.org/04wq8zb47 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47818738 |
| authorships[2].institutions[0].country_code | OM |
| authorships[2].institutions[0].display_name | Sultan Qaboos University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Majdi Mansouri |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3621487 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | Deep Learning-Based Fish Health Monitoring and Diagnosis: A Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12697 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9749000072479248 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Water Quality Monitoring Technologies |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3621487 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3621487 |
| primary_location.id | doi:10.1109/access.2025.3621487 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3621487 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3184283071, https://openalex.org/W2037734130, https://openalex.org/W1676707366, https://openalex.org/W2340852204, https://openalex.org/W4406523038, https://openalex.org/W4409097187, https://openalex.org/W4408068938, https://openalex.org/W4399906636, https://openalex.org/W4388897760, https://openalex.org/W4388562211, https://openalex.org/W4386001604, https://openalex.org/W4206989389, https://openalex.org/W4367043571, https://openalex.org/W4387250463, https://openalex.org/W4391425915, https://openalex.org/W4387499686, https://openalex.org/W4224255935, https://openalex.org/W2703332, https://openalex.org/W4224438925, https://openalex.org/W4412185167, https://openalex.org/W3185562055, https://openalex.org/W4405310664, https://openalex.org/W2791205691, https://openalex.org/W3161418236, https://openalex.org/W3008350376, https://openalex.org/W3215753146, https://openalex.org/W2768542258, https://openalex.org/W4366549503, https://openalex.org/W4386495778, https://openalex.org/W4386524665, https://openalex.org/W2072955485, https://openalex.org/W3194564026, https://openalex.org/W4399883505, https://openalex.org/W4404075740, https://openalex.org/W2618530766, https://openalex.org/W4402177619, https://openalex.org/W4404147611, https://openalex.org/W4408711540, https://openalex.org/W2153125595, https://openalex.org/W4403263302, https://openalex.org/W4388838102, https://openalex.org/W4319336898, https://openalex.org/W4395695600, https://openalex.org/W4411089852, https://openalex.org/W4402053106, https://openalex.org/W4394994359, https://openalex.org/W4411298927, https://openalex.org/W4406614019, https://openalex.org/W4410956883, https://openalex.org/W4406812022, https://openalex.org/W4407191134, https://openalex.org/W4382138865, https://openalex.org/W4391218118, https://openalex.org/W4394932852, https://openalex.org/W4386352770, https://openalex.org/W4313477864, https://openalex.org/W4404563145, https://openalex.org/W4409752803, https://openalex.org/W4412536281, https://openalex.org/W4390494339, https://openalex.org/W4408182332, https://openalex.org/W4321372874, https://openalex.org/W4407438842, https://openalex.org/W4206027991, https://openalex.org/W3212619461, https://openalex.org/W4403777245, https://openalex.org/W4307291335, https://openalex.org/W3019461574, https://openalex.org/W4319450788, https://openalex.org/W2791905659, https://openalex.org/W4401629867, https://openalex.org/W2773133453, https://openalex.org/W4391329649, https://openalex.org/W4323042041, https://openalex.org/W4402214244, https://openalex.org/W4410228823, https://openalex.org/W4293062810, https://openalex.org/W4378714943, https://openalex.org/W4406728929, https://openalex.org/W4402201880, https://openalex.org/W4405975152, https://openalex.org/W4392450995, https://openalex.org/W4386630001 |
| referenced_works_count | 83 |
| abstract_inverted_index.a | 116, 191 |
| abstract_inverted_index.By | 122 |
| abstract_inverted_index.DL | 124 |
| abstract_inverted_index.We | 174 |
| abstract_inverted_index.as | 42, 141 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.in | 1, 75, 103, 119, 164 |
| abstract_inverted_index.it | 129 |
| abstract_inverted_index.of | 86, 154 |
| abstract_inverted_index.on | 38 |
| abstract_inverted_index.or | 78 |
| abstract_inverted_index.to | 57, 72, 132, 183, 199 |
| abstract_inverted_index.and | 12, 22, 27, 34, 48, 61, 66, 99, 108, 147, 172, 196 |
| abstract_inverted_index.for | 96, 194 |
| abstract_inverted_index.gap | 82 |
| abstract_inverted_index.the | 59, 84, 152 |
| abstract_inverted_index.use | 85 |
| abstract_inverted_index.(DL) | 115 |
| abstract_inverted_index.Fish | 0 |
| abstract_inverted_index.HMD, | 166 |
| abstract_inverted_index.This | 81, 158, 188 |
| abstract_inverted_index.also | 175 |
| abstract_inverted_index.data | 94, 127, 181 |
| abstract_inverted_index.deep | 113 |
| abstract_inverted_index.face | 4 |
| abstract_inverted_index.fail | 56 |
| abstract_inverted_index.from | 137 |
| abstract_inverted_index.have | 111 |
| abstract_inverted_index.like | 20 |
| abstract_inverted_index.made | 112 |
| abstract_inverted_index.more | 97 |
| abstract_inverted_index.such | 41, 140 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.this | 120 |
| abstract_inverted_index.tool | 118 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.(HMD) | 36 |
| abstract_inverted_index.These | 15 |
| abstract_inverted_index.large | 106 |
| abstract_inverted_index.learn | 133 |
| abstract_inverted_index.often | 55 |
| abstract_inverted_index.paper | 159 |
| abstract_inverted_index.their | 70, 170 |
| abstract_inverted_index.water | 10, 49, 76, 142 |
| abstract_inverted_index.Health | 32 |
| abstract_inverted_index.affect | 17 |
| abstract_inverted_index.aging, | 9 |
| abstract_inverted_index.aiming | 198 |
| abstract_inverted_index.field. | 121 |
| abstract_inverted_index.fusion | 182 |
| abstract_inverted_index.future | 177 |
| abstract_inverted_index.health | 5, 186, 202 |
| abstract_inverted_index.inputs | 139 |
| abstract_inverted_index.issues | 16 |
| abstract_inverted_index.power, | 105 |
| abstract_inverted_index.recent | 168 |
| abstract_inverted_index.relies | 37 |
| abstract_inverted_index.review | 189 |
| abstract_inverted_index.robust | 98 |
| abstract_inverted_index.sudden | 73 |
| abstract_inverted_index.system | 29 |
| abstract_inverted_index.visual | 148 |
| abstract_inverted_index.advance | 200 |
| abstract_inverted_index.becomes | 130 |
| abstract_inverted_index.between | 64 |
| abstract_inverted_index.capture | 58 |
| abstract_inverted_index.causing | 28 |
| abstract_inverted_index.changes | 74 |
| abstract_inverted_index.complex | 60 |
| abstract_inverted_index.concise | 192 |
| abstract_inverted_index.discuss | 176 |
| abstract_inverted_index.disease | 79 |
| abstract_inverted_index.diverse | 93 |
| abstract_inverted_index.enhance | 184 |
| abstract_inverted_index.feeding | 21, 46 |
| abstract_inverted_index.habits, | 47 |
| abstract_inverted_index.quality | 143 |
| abstract_inverted_index.reviews | 160 |
| abstract_inverted_index.sources | 95 |
| abstract_inverted_index.systems | 3 |
| abstract_inverted_index.thereby | 150 |
| abstract_inverted_index.Advances | 102 |
| abstract_inverted_index.DL-based | 161 |
| abstract_inverted_index.However, | 51 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.directly | 136 |
| abstract_inverted_index.factors, | 68 |
| abstract_inverted_index.failure. | 30 |
| abstract_inverted_index.features | 40 |
| abstract_inverted_index.learning | 89, 114 |
| abstract_inverted_index.limiting | 69 |
| abstract_inverted_index.methods. | 157 |
| abstract_inverted_index.physical | 44 |
| abstract_inverted_index.possible | 131 |
| abstract_inverted_index.provides | 190 |
| abstract_inverted_index.quality, | 11 |
| abstract_inverted_index.reducing | 25 |
| abstract_inverted_index.reliable | 100 |
| abstract_inverted_index.resource | 193 |
| abstract_inverted_index.signals, | 146 |
| abstract_inverted_index.DL-driven | 185 |
| abstract_inverted_index.Diagnosis | 35 |
| abstract_inverted_index.Effective | 31 |
| abstract_inverted_index.analysis. | 101 |
| abstract_inverted_index.behavior, | 43 |
| abstract_inverted_index.combining | 123 |
| abstract_inverted_index.comparing | 167 |
| abstract_inverted_index.computing | 104 |
| abstract_inverted_index.datasets, | 107 |
| abstract_inverted_index.integrate | 92 |
| abstract_inverted_index.measures, | 144 |
| abstract_inverted_index.motivates | 83 |
| abstract_inverted_index.nonlinear | 62 |
| abstract_inverted_index.Monitoring | 33 |
| abstract_inverted_index.algorithms | 110 |
| abstract_inverted_index.approaches | 54, 163 |
| abstract_inverted_index.behavioral | 145 |
| abstract_inverted_index.biological | 65 |
| abstract_inverted_index.challenges | 6 |
| abstract_inverted_index.components | 19 |
| abstract_inverted_index.condition, | 45 |
| abstract_inverted_index.conditions | 77 |
| abstract_inverted_index.efficiency | 26 |
| abstract_inverted_index.high-level | 134 |
| abstract_inverted_index.influenced | 7 |
| abstract_inverted_index.multimodal | 88, 126, 162, 180 |
| abstract_inverted_index.outbreaks. | 80 |
| abstract_inverted_index.overcoming | 151 |
| abstract_inverted_index.strategies | 90 |
| abstract_inverted_index.strengths, | 171 |
| abstract_inverted_index.aquaculture | 2, 165, 201 |
| abstract_inverted_index.conditions. | 14 |
| abstract_inverted_index.directions, | 178 |
| abstract_inverted_index.emphasizing | 179 |
| abstract_inverted_index.filtration, | 23 |
| abstract_inverted_index.limitations | 153 |
| abstract_inverted_index.monitoring. | 187, 203 |
| abstract_inverted_index.parameters. | 50 |
| abstract_inverted_index.potentially | 24 |
| abstract_inverted_index.researchers | 195 |
| abstract_inverted_index.techniques, | 169 |
| abstract_inverted_index.traditional | 52 |
| abstract_inverted_index.adaptability | 71 |
| abstract_inverted_index.conventional | 155 |
| abstract_inverted_index.hand-crafted | 53 |
| abstract_inverted_index.high-quality | 39 |
| abstract_inverted_index.integration, | 128 |
| abstract_inverted_index.intelligent, | 87 |
| abstract_inverted_index.interactions | 63 |
| abstract_inverted_index.limitations. | 173 |
| abstract_inverted_index.environmental | 13, 67 |
| abstract_inverted_index.feature-based | 156 |
| abstract_inverted_index.heterogeneous | 138 |
| abstract_inverted_index.observations, | 149 |
| abstract_inverted_index.practitioners | 197 |
| abstract_inverted_index.sophisticated | 109 |
| abstract_inverted_index.transformative | 117 |
| abstract_inverted_index.representations | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.46478805 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |