Deep learning-based multi-brain capsule network for Next-Gen Clinical Emotion recognition using EEG signals Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.neuri.2025.100203
Deep learning techniques are crucial for next-generation clinical applications, particularly in Next-Gen Clinical Emotion recognition. To enhance classification accuracy, we propose an Attention mechanism based Capsule Network Model (At-CapNet) for Multi-Brain Region. EEG-tNIRS signals were collected using Next-Gen Clinical Emotion-inducing visual stimuli to construct the TYUT3.0 dataset, from which EEG and tNIRS features were extracted and mapped into matrices. A multi-brain region attention mechanism was applied to integrate EEG and tNIRS features, assigning different weights to features from distinct brain regions to obtain high-quality primary capsules. Additionally, a capsule network module was introduced to optimize the number of capsules entering the dynamic routing mechanism, improving computational efficiency. Experimental validation on the TYUT3.0 Next-Gen Clinical Emotion dataset demonstrates that integrating EEG and tNIRS improves recognition accuracy by 1.53% and 14.35% compared to single-modality signals. Moreover, the At-CapNet model achieves an average accuracy improvement of 4.98% over the original CapsNet model and outperforms existing CapsNet-based Next-Gen Clinical Emotion recognition models by 1% to 5%. This research contributes to the advancement of non-invasive neurotechnology for precise Next-Gen Clinical Emotion recognition, with potential implications for next-generation clinical diagnostics and interventions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.neuri.2025.100203
- OA Status
- gold
- Cited By
- 5
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409886107
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409886107Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.neuri.2025.100203Digital Object Identifier
- Title
-
Deep learning-based multi-brain capsule network for Next-Gen Clinical Emotion recognition using EEG signalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-28Full publication date if available
- Authors
-
Ravinder Dahiya, G Mamatha, Shila Jawale, Santanu Das, Sagar Choudhary, Vinod Rathod, Bhawna Janghel RajputList of authors in order
- Landing page
-
https://doi.org/10.1016/j.neuri.2025.100203Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.neuri.2025.100203Direct OA link when available
- Concepts
-
Electroencephalography, Computer science, Deep learning, Pattern recognition (psychology), Artificial intelligence, Neuroscience, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409886107 |
|---|---|
| doi | https://doi.org/10.1016/j.neuri.2025.100203 |
| ids.doi | https://doi.org/10.1016/j.neuri.2025.100203 |
| ids.openalex | https://openalex.org/W4409886107 |
| fwci | 20.41902452 |
| type | article |
| title | Deep learning-based multi-brain capsule network for Next-Gen Clinical Emotion recognition using EEG signals |
| biblio.issue | 2 |
| biblio.volume | 5 |
| biblio.last_page | 100203 |
| biblio.first_page | 100203 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T10667 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Emotion and Mood Recognition |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6909734010696411 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4745001494884491 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4308006167411804 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.42813628911972046 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4227299094200134 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C169760540 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3977919816970825 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[5].display_name | Neuroscience |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38168761134147644 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.6909734010696411 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4745001494884491 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.4308006167411804 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.42813628911972046 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4227299094200134 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/neuroscience |
| keywords[5].score | 0.3977919816970825 |
| keywords[5].display_name | Neuroscience |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.38168761134147644 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1016/j.neuri.2025.100203 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210237490 |
| locations[0].source.issn | 2772-5286 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2772-5286 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Neuroscience Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neuroscience Informatics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.neuri.2025.100203 |
| locations[1].id | pmh:oai:doaj.org/article:40d245427b3742c9a8d658c5c6bb39cd |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Neuroscience Informatics, Vol 5, Iss 2, Pp 100203- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/40d245427b3742c9a8d658c5c6bb39cd |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085150253 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3858-3841 |
| authorships[0].author.display_name | Ravinder Dahiya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ritu Dahiya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5045238672 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | G Mamatha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mamatha G |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086192920 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6398-5586 |
| authorships[2].author.display_name | Shila Jawale |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shila Sumol Jawale |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071688825 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0147-449X |
| authorships[3].author.display_name | Santanu Das |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Santanu Das |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010177847 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2676-6050 |
| authorships[4].author.display_name | Sagar Choudhary |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sagar Choudhary |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5025662893 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-4528-2681 |
| authorships[5].author.display_name | Vinod Rathod |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Vinod Motiram Rathod |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5114102009 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Bhawna Janghel Rajput |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Bhawna Janghel Rajput |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.neuri.2025.100203 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning-based multi-brain capsule network for Next-Gen Clinical Emotion recognition using EEG signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W3086377361 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.neuri.2025.100203 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210237490 |
| best_oa_location.source.issn | 2772-5286 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2772-5286 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Neuroscience Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neuroscience Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.neuri.2025.100203 |
| primary_location.id | doi:10.1016/j.neuri.2025.100203 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210237490 |
| primary_location.source.issn | 2772-5286 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2772-5286 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Neuroscience Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neuroscience Informatics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.neuri.2025.100203 |
| publication_date | 2025-04-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4397024074, https://openalex.org/W6869898214, https://openalex.org/W4400606216, https://openalex.org/W4407803980, https://openalex.org/W4380091293, https://openalex.org/W4404976639, https://openalex.org/W4306711441, https://openalex.org/W4291493187, https://openalex.org/W6853222773, https://openalex.org/W4312952496, https://openalex.org/W4312297461, https://openalex.org/W4400413570, https://openalex.org/W4392301516, https://openalex.org/W4404048839, https://openalex.org/W4404728088, https://openalex.org/W4400259763, https://openalex.org/W6874216297, https://openalex.org/W6874894686, https://openalex.org/W4405237035, https://openalex.org/W4407157196, https://openalex.org/W4389219283, https://openalex.org/W4394984695, https://openalex.org/W6878007827, https://openalex.org/W6877746226, https://openalex.org/W6877987772, https://openalex.org/W4404356903, https://openalex.org/W4402714520, https://openalex.org/W4407607367, https://openalex.org/W4394676127, https://openalex.org/W4392976438, https://openalex.org/W4389066247, https://openalex.org/W4367056990, https://openalex.org/W4407053152, https://openalex.org/W4322505627, https://openalex.org/W4367840214, https://openalex.org/W6854847843, https://openalex.org/W3085314398, https://openalex.org/W2955852632, https://openalex.org/W4406349267, https://openalex.org/W3095446073, https://openalex.org/W4200436807, https://openalex.org/W6851069584, https://openalex.org/W4394910079, https://openalex.org/W4399855163, https://openalex.org/W4407836702, https://openalex.org/W4399786779, https://openalex.org/W4405465574, https://openalex.org/W4407691925, https://openalex.org/W4328053375, https://openalex.org/W4384938464, https://openalex.org/W4380767711, https://openalex.org/W4403936405, https://openalex.org/W4408398036 |
| referenced_works_count | 53 |
| abstract_inverted_index.A | 59 |
| abstract_inverted_index.a | 87 |
| abstract_inverted_index.1% | 159 |
| abstract_inverted_index.To | 15 |
| abstract_inverted_index.an | 21, 138 |
| abstract_inverted_index.by | 125, 158 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.of | 97, 142, 168 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.to | 42, 66, 75, 81, 93, 130, 160, 165 |
| abstract_inverted_index.we | 19 |
| abstract_inverted_index.5%. | 161 |
| abstract_inverted_index.EEG | 49, 68, 119 |
| abstract_inverted_index.and | 50, 55, 69, 120, 127, 149, 184 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 5, 29, 171, 180 |
| abstract_inverted_index.the | 44, 95, 100, 110, 134, 145, 166 |
| abstract_inverted_index.was | 64, 91 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.This | 162 |
| abstract_inverted_index.from | 47, 77 |
| abstract_inverted_index.into | 57 |
| abstract_inverted_index.over | 144 |
| abstract_inverted_index.that | 117 |
| abstract_inverted_index.were | 34, 53 |
| abstract_inverted_index.with | 177 |
| abstract_inverted_index.1.53% | 126 |
| abstract_inverted_index.4.98% | 143 |
| abstract_inverted_index.Model | 27 |
| abstract_inverted_index.based | 24 |
| abstract_inverted_index.brain | 79 |
| abstract_inverted_index.model | 136, 148 |
| abstract_inverted_index.tNIRS | 51, 70, 121 |
| abstract_inverted_index.using | 36 |
| abstract_inverted_index.which | 48 |
| abstract_inverted_index.14.35% | 128 |
| abstract_inverted_index.mapped | 56 |
| abstract_inverted_index.models | 157 |
| abstract_inverted_index.module | 90 |
| abstract_inverted_index.number | 96 |
| abstract_inverted_index.obtain | 82 |
| abstract_inverted_index.region | 61 |
| abstract_inverted_index.visual | 40 |
| abstract_inverted_index.CapsNet | 147 |
| abstract_inverted_index.Capsule | 25 |
| abstract_inverted_index.Emotion | 13, 114, 155, 175 |
| abstract_inverted_index.Network | 26 |
| abstract_inverted_index.Region. | 31 |
| abstract_inverted_index.TYUT3.0 | 45, 111 |
| abstract_inverted_index.applied | 65 |
| abstract_inverted_index.average | 139 |
| abstract_inverted_index.capsule | 88 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.dataset | 115 |
| abstract_inverted_index.dynamic | 101 |
| abstract_inverted_index.enhance | 16 |
| abstract_inverted_index.network | 89 |
| abstract_inverted_index.precise | 172 |
| abstract_inverted_index.primary | 84 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.regions | 80 |
| abstract_inverted_index.routing | 102 |
| abstract_inverted_index.signals | 33 |
| abstract_inverted_index.stimuli | 41 |
| abstract_inverted_index.weights | 74 |
| abstract_inverted_index.Clinical | 12, 38, 113, 154, 174 |
| abstract_inverted_index.Next-Gen | 11, 37, 112, 153, 173 |
| abstract_inverted_index.accuracy | 124, 140 |
| abstract_inverted_index.achieves | 137 |
| abstract_inverted_index.capsules | 98 |
| abstract_inverted_index.clinical | 7, 182 |
| abstract_inverted_index.compared | 129 |
| abstract_inverted_index.dataset, | 46 |
| abstract_inverted_index.distinct | 78 |
| abstract_inverted_index.entering | 99 |
| abstract_inverted_index.existing | 151 |
| abstract_inverted_index.features | 52, 76 |
| abstract_inverted_index.improves | 122 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.optimize | 94 |
| abstract_inverted_index.original | 146 |
| abstract_inverted_index.research | 163 |
| abstract_inverted_index.signals. | 132 |
| abstract_inverted_index.At-CapNet | 135 |
| abstract_inverted_index.Attention | 22 |
| abstract_inverted_index.EEG-tNIRS | 32 |
| abstract_inverted_index.Moreover, | 133 |
| abstract_inverted_index.accuracy, | 18 |
| abstract_inverted_index.assigning | 72 |
| abstract_inverted_index.attention | 62 |
| abstract_inverted_index.capsules. | 85 |
| abstract_inverted_index.collected | 35 |
| abstract_inverted_index.construct | 43 |
| abstract_inverted_index.different | 73 |
| abstract_inverted_index.extracted | 54 |
| abstract_inverted_index.features, | 71 |
| abstract_inverted_index.improving | 104 |
| abstract_inverted_index.integrate | 67 |
| abstract_inverted_index.matrices. | 58 |
| abstract_inverted_index.mechanism | 23, 63 |
| abstract_inverted_index.potential | 178 |
| abstract_inverted_index.introduced | 92 |
| abstract_inverted_index.mechanism, | 103 |
| abstract_inverted_index.techniques | 2 |
| abstract_inverted_index.validation | 108 |
| abstract_inverted_index.(At-CapNet) | 28 |
| abstract_inverted_index.Multi-Brain | 30 |
| abstract_inverted_index.advancement | 167 |
| abstract_inverted_index.contributes | 164 |
| abstract_inverted_index.diagnostics | 183 |
| abstract_inverted_index.efficiency. | 106 |
| abstract_inverted_index.improvement | 141 |
| abstract_inverted_index.integrating | 118 |
| abstract_inverted_index.multi-brain | 60 |
| abstract_inverted_index.outperforms | 150 |
| abstract_inverted_index.recognition | 123, 156 |
| abstract_inverted_index.Experimental | 107 |
| abstract_inverted_index.demonstrates | 116 |
| abstract_inverted_index.high-quality | 83 |
| abstract_inverted_index.implications | 179 |
| abstract_inverted_index.non-invasive | 169 |
| abstract_inverted_index.particularly | 9 |
| abstract_inverted_index.recognition, | 176 |
| abstract_inverted_index.recognition. | 14 |
| abstract_inverted_index.Additionally, | 86 |
| abstract_inverted_index.CapsNet-based | 152 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.computational | 105 |
| abstract_inverted_index.classification | 17 |
| abstract_inverted_index.interventions. | 185 |
| abstract_inverted_index.neurotechnology | 170 |
| abstract_inverted_index.next-generation | 6, 181 |
| abstract_inverted_index.single-modality | 131 |
| abstract_inverted_index.Emotion-inducing | 39 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.98594691 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |