Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO Systems Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2201.12659
This paper proposes a deep learning based power allocation (DL-PA) and hybrid precoding technique for multiuser massive multiple-input multiple-output (MU-mMIMO) systems. We first utilize an angular-based hybrid precoding technique for reducing the number of RF chains and channel estimation overhead. Then, we develop the DL-PA algorithm via a fully-connected deep neural network (DNN). DL-PA has two phases: (i) offline supervised learning with the optimal allocated powers obtained by particle swarm optimization based PA (PSO-PA) algorithm, (ii) online power prediction by the trained DNN. In comparison to the computationally expensive PSO-PA, it is shown that DL-PA greatly reduces the runtime by 98.6%-99.9%, while closely achieving the optimal sum-rate capacity. It makes DL-PA a promising algorithm for the real-time online applications in MU-mMIMO systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2201.12659
- https://arxiv.org/pdf/2201.12659
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221145362
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221145362Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2201.12659Digital Object Identifier
- Title
-
Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-29Full publication date if available
- Authors
-
Asil Koç, Mike Wang, Tho Le‐NgocList of authors in order
- Landing page
-
https://arxiv.org/abs/2201.12659Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2201.12659Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2201.12659Direct OA link when available
- Concepts
-
Precoding, Overhead (engineering), Particle swarm optimization, Computer science, MIMO, Deep learning, Artificial neural network, Artificial intelligence, Channel (broadcasting), Algorithm, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221145362 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2201.12659 |
| ids.doi | https://doi.org/10.48550/arxiv.2201.12659 |
| ids.openalex | https://openalex.org/W4221145362 |
| fwci | |
| type | preprint |
| title | Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10148 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced MIMO Systems Optimization |
| topics[1].id | https://openalex.org/T10936 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Millimeter-Wave Propagation and Modeling |
| topics[2].id | https://openalex.org/T11392 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9807000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Harvesting in Wireless Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160562895 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8464957475662231 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7239557 |
| concepts[0].display_name | Precoding |
| concepts[1].id | https://openalex.org/C2779960059 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7377569675445557 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[1].display_name | Overhead (engineering) |
| concepts[2].id | https://openalex.org/C85617194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7235353589057922 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[2].display_name | Particle swarm optimization |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6488898992538452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C207987634 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6185932159423828 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176862 |
| concepts[4].display_name | MIMO |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4945079982280731 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48121097683906555 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4251665472984314 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C127162648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4137059152126312 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[8].display_name | Channel (broadcasting) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36578673124313354 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09273728728294373 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/precoding |
| keywords[0].score | 0.8464957475662231 |
| keywords[0].display_name | Precoding |
| keywords[1].id | https://openalex.org/keywords/overhead |
| keywords[1].score | 0.7377569675445557 |
| keywords[1].display_name | Overhead (engineering) |
| keywords[2].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[2].score | 0.7235353589057922 |
| keywords[2].display_name | Particle swarm optimization |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6488898992538452 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mimo |
| keywords[4].score | 0.6185932159423828 |
| keywords[4].display_name | MIMO |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4945079982280731 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.48121097683906555 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4251665472984314 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/channel |
| keywords[8].score | 0.4137059152126312 |
| keywords[8].display_name | Channel (broadcasting) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.36578673124313354 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.09273728728294373 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2201.12659 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2201.12659 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2201.12659 |
| locations[1].id | doi:10.48550/arxiv.2201.12659 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2201.12659 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021064781 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8757-0377 |
| authorships[0].author.display_name | Asil Koç |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Koc, Asil |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020888355 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6487-5912 |
| authorships[1].author.display_name | Mike Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Mike |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026464766 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9308-8894 |
| authorships[2].author.display_name | Tho Le‐Ngoc |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Le-Ngoc, Tho |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2201.12659 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning based Multi-User Power Allocation and Hybrid Precoding in Massive MIMO Systems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10148 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced MIMO Systems Optimization |
| related_works | https://openalex.org/W4281688526, https://openalex.org/W2152088989, https://openalex.org/W2756419127, https://openalex.org/W4366493479, https://openalex.org/W2401571617, https://openalex.org/W2905893439, https://openalex.org/W3135374966, https://openalex.org/W2953205382, https://openalex.org/W2489379490, https://openalex.org/W2141031289 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2201.12659 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2201.12659 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2201.12659 |
| primary_location.id | pmh:oai:arXiv.org:2201.12659 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2201.12659 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2201.12659 |
| publication_date | 2022-01-29 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 47, 111 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.It | 108 |
| abstract_inverted_index.PA | 72 |
| abstract_inverted_index.RF | 34 |
| abstract_inverted_index.We | 21 |
| abstract_inverted_index.an | 24 |
| abstract_inverted_index.by | 67, 79, 99 |
| abstract_inverted_index.in | 119 |
| abstract_inverted_index.is | 91 |
| abstract_inverted_index.it | 90 |
| abstract_inverted_index.of | 33 |
| abstract_inverted_index.to | 85 |
| abstract_inverted_index.we | 41 |
| abstract_inverted_index.(i) | 57 |
| abstract_inverted_index.and | 10, 36 |
| abstract_inverted_index.for | 14, 29, 114 |
| abstract_inverted_index.has | 54 |
| abstract_inverted_index.the | 31, 43, 62, 80, 86, 97, 104, 115 |
| abstract_inverted_index.two | 55 |
| abstract_inverted_index.via | 46 |
| abstract_inverted_index.(ii) | 75 |
| abstract_inverted_index.DNN. | 82 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 4, 49 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.with | 61 |
| abstract_inverted_index.DL-PA | 44, 53, 94, 110 |
| abstract_inverted_index.Then, | 40 |
| abstract_inverted_index.based | 6, 71 |
| abstract_inverted_index.first | 22 |
| abstract_inverted_index.makes | 109 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.power | 7, 77 |
| abstract_inverted_index.shown | 92 |
| abstract_inverted_index.swarm | 69 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.(DNN). | 52 |
| abstract_inverted_index.chains | 35 |
| abstract_inverted_index.hybrid | 11, 26 |
| abstract_inverted_index.neural | 50 |
| abstract_inverted_index.number | 32 |
| abstract_inverted_index.online | 76, 117 |
| abstract_inverted_index.powers | 65 |
| abstract_inverted_index.(DL-PA) | 9 |
| abstract_inverted_index.PSO-PA, | 89 |
| abstract_inverted_index.channel | 37 |
| abstract_inverted_index.closely | 102 |
| abstract_inverted_index.develop | 42 |
| abstract_inverted_index.greatly | 95 |
| abstract_inverted_index.massive | 16 |
| abstract_inverted_index.network | 51 |
| abstract_inverted_index.offline | 58 |
| abstract_inverted_index.optimal | 63, 105 |
| abstract_inverted_index.phases: | 56 |
| abstract_inverted_index.reduces | 96 |
| abstract_inverted_index.runtime | 98 |
| abstract_inverted_index.trained | 81 |
| abstract_inverted_index.utilize | 23 |
| abstract_inverted_index.(PSO-PA) | 73 |
| abstract_inverted_index.MU-mMIMO | 120 |
| abstract_inverted_index.learning | 5, 60 |
| abstract_inverted_index.obtained | 66 |
| abstract_inverted_index.particle | 68 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.reducing | 30 |
| abstract_inverted_index.sum-rate | 106 |
| abstract_inverted_index.systems. | 20, 121 |
| abstract_inverted_index.achieving | 103 |
| abstract_inverted_index.algorithm | 45, 113 |
| abstract_inverted_index.allocated | 64 |
| abstract_inverted_index.capacity. | 107 |
| abstract_inverted_index.expensive | 88 |
| abstract_inverted_index.multiuser | 15 |
| abstract_inverted_index.overhead. | 39 |
| abstract_inverted_index.precoding | 12, 27 |
| abstract_inverted_index.promising | 112 |
| abstract_inverted_index.real-time | 116 |
| abstract_inverted_index.technique | 13, 28 |
| abstract_inverted_index.(MU-mMIMO) | 19 |
| abstract_inverted_index.algorithm, | 74 |
| abstract_inverted_index.allocation | 8 |
| abstract_inverted_index.comparison | 84 |
| abstract_inverted_index.estimation | 38 |
| abstract_inverted_index.prediction | 78 |
| abstract_inverted_index.supervised | 59 |
| abstract_inverted_index.98.6%-99.9%, | 100 |
| abstract_inverted_index.applications | 118 |
| abstract_inverted_index.optimization | 70 |
| abstract_inverted_index.angular-based | 25 |
| abstract_inverted_index.multiple-input | 17 |
| abstract_inverted_index.computationally | 87 |
| abstract_inverted_index.fully-connected | 48 |
| abstract_inverted_index.multiple-output | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |