Deep Learning Based on Facial Expression Recognition from Images to Videos Article Swipe
Facial expressions, as a vital conduit for human emotional expression, are among the most observable features of machines in the field of computer vision. Consequently, facial expression recognition holds broad potential for applications in artificial intelligence and health monitoring, among others. Given the diversity and complexity of expressions, the development of efficient and accurate models for expression recognition is of significant importance. This paper systematically reviews the foundational knowledge and related research in facial expression recognition, analyzing the application of current primary models in expression recognition. Employing a combination of literature review and experimental analysis, this study evaluates existing facial expression recognition algorithms. Special attention is given to advanced models based on Convolutional Neural Networks (CNNs), with a detailed comparison of their architectures and characteristics, analyzing their performance under various conditions. The paper concludes with a summary of the latest advancements in the field of facial expression recognition and proposes potential directions for future research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/itmconf/20257302036
- OA Status
- diamond
- Cited By
- 1
- References
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407666687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407666687Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/itmconf/20257302036Digital Object Identifier
- Title
-
Deep Learning Based on Facial Expression Recognition from Images to VideosWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Rui DengList of authors in order
- Landing page
-
https://doi.org/10.1051/itmconf/20257302036Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1051/itmconf/20257302036Direct OA link when available
- Concepts
-
Facial expression recognition, Artificial intelligence, Facial expression, Computer science, Deep learning, Pattern recognition (psychology), Computer vision, Facial recognition system, Speech recognitionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407666687 |
|---|---|
| doi | https://doi.org/10.1051/itmconf/20257302036 |
| ids.doi | https://doi.org/10.1051/itmconf/20257302036 |
| ids.openalex | https://openalex.org/W4407666687 |
| fwci | 4.77340731 |
| type | article |
| title | Deep Learning Based on Facial Expression Recognition from Images to Videos |
| biblio.issue | |
| biblio.volume | 73 |
| biblio.last_page | 02036 |
| biblio.first_page | 02036 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.994700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T11398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9718999862670898 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Hand Gesture Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2987714656 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7573047876358032 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1185804 |
| concepts[0].display_name | Facial expression recognition |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.614879846572876 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C195704467 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5822352170944214 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q327968 |
| concepts[2].display_name | Facial expression |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5441563725471497 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4618052840232849 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4462698698043823 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41370338201522827 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C31510193 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4088475704193115 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[7].display_name | Facial recognition system |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.365886926651001 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| keywords[0].id | https://openalex.org/keywords/facial-expression-recognition |
| keywords[0].score | 0.7573047876358032 |
| keywords[0].display_name | Facial expression recognition |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.614879846572876 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/facial-expression |
| keywords[2].score | 0.5822352170944214 |
| keywords[2].display_name | Facial expression |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5441563725471497 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4618052840232849 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4462698698043823 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.41370338201522827 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[7].score | 0.4088475704193115 |
| keywords[7].display_name | Facial recognition system |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.365886926651001 |
| keywords[8].display_name | Speech recognition |
| language | en |
| locations[0].id | doi:10.1051/itmconf/20257302036 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210171711 |
| locations[0].source.issn | 2271-2097, 2431-7578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2271-2097 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ITM Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ITM Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/itmconf/20257302036 |
| locations[1].id | pmh:oai:doaj.org/article:879df8d0c93c472e85bab55ccd2c7308 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ITM Web of Conferences, Vol 73, p 02036 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/879df8d0c93c472e85bab55ccd2c7308 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5006470125 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6666-9095 |
| authorships[0].author.display_name | Rui Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rui Deng |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1051/itmconf/20257302036 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-02-18T00:00:00 |
| display_name | Deep Learning Based on Facial Expression Recognition from Images to Videos |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.994700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W4205986151, https://openalex.org/W2355913164, https://openalex.org/W2162992774, https://openalex.org/W1153638794, https://openalex.org/W2168968280, https://openalex.org/W2901126000, https://openalex.org/W4323520705, https://openalex.org/W4287865932, https://openalex.org/W2116055069, https://openalex.org/W2356663679 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1051/itmconf/20257302036 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210171711 |
| best_oa_location.source.issn | 2271-2097, 2431-7578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2271-2097 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ITM Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ITM Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/itmconf/20257302036 |
| primary_location.id | doi:10.1051/itmconf/20257302036 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210171711 |
| primary_location.source.issn | 2271-2097, 2431-7578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2271-2097 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ITM Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ITM Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/itmconf/20257302036 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2003238582, https://openalex.org/W1854318472, https://openalex.org/W2147800946, https://openalex.org/W2097117768, https://openalex.org/W2194775991, https://openalex.org/W1498436455, https://openalex.org/W1995341919, https://openalex.org/W2101926813, https://openalex.org/W2064675550, https://openalex.org/W2029918260, https://openalex.org/W2604272474 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 3, 87, 117, 135 |
| abstract_inverted_index.as | 2 |
| abstract_inverted_index.in | 18, 33, 72, 83, 141 |
| abstract_inverted_index.is | 58, 105 |
| abstract_inverted_index.of | 16, 21, 46, 50, 59, 79, 89, 120, 137, 144 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.to | 107 |
| abstract_inverted_index.The | 131 |
| abstract_inverted_index.and | 36, 44, 52, 69, 92, 123, 148 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.for | 6, 31, 55, 152 |
| abstract_inverted_index.the | 12, 19, 42, 48, 66, 77, 138, 142 |
| abstract_inverted_index.This | 62 |
| abstract_inverted_index.most | 13 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.with | 116, 134 |
| abstract_inverted_index.Given | 41 |
| abstract_inverted_index.among | 11, 39 |
| abstract_inverted_index.based | 110 |
| abstract_inverted_index.broad | 29 |
| abstract_inverted_index.field | 20, 143 |
| abstract_inverted_index.given | 106 |
| abstract_inverted_index.holds | 28 |
| abstract_inverted_index.human | 7 |
| abstract_inverted_index.paper | 63, 132 |
| abstract_inverted_index.study | 96 |
| abstract_inverted_index.their | 121, 126 |
| abstract_inverted_index.under | 128 |
| abstract_inverted_index.vital | 4 |
| abstract_inverted_index.Facial | 0 |
| abstract_inverted_index.Neural | 113 |
| abstract_inverted_index.facial | 25, 73, 99, 145 |
| abstract_inverted_index.future | 153 |
| abstract_inverted_index.health | 37 |
| abstract_inverted_index.latest | 139 |
| abstract_inverted_index.models | 54, 82, 109 |
| abstract_inverted_index.review | 91 |
| abstract_inverted_index.(CNNs), | 115 |
| abstract_inverted_index.Special | 103 |
| abstract_inverted_index.conduit | 5 |
| abstract_inverted_index.current | 80 |
| abstract_inverted_index.others. | 40 |
| abstract_inverted_index.primary | 81 |
| abstract_inverted_index.related | 70 |
| abstract_inverted_index.reviews | 65 |
| abstract_inverted_index.summary | 136 |
| abstract_inverted_index.various | 129 |
| abstract_inverted_index.vision. | 23 |
| abstract_inverted_index.Networks | 114 |
| abstract_inverted_index.accurate | 53 |
| abstract_inverted_index.advanced | 108 |
| abstract_inverted_index.computer | 22 |
| abstract_inverted_index.detailed | 118 |
| abstract_inverted_index.existing | 98 |
| abstract_inverted_index.features | 15 |
| abstract_inverted_index.machines | 17 |
| abstract_inverted_index.proposes | 149 |
| abstract_inverted_index.research | 71 |
| abstract_inverted_index.Employing | 86 |
| abstract_inverted_index.analysis, | 94 |
| abstract_inverted_index.analyzing | 76, 125 |
| abstract_inverted_index.attention | 104 |
| abstract_inverted_index.concludes | 133 |
| abstract_inverted_index.diversity | 43 |
| abstract_inverted_index.efficient | 51 |
| abstract_inverted_index.emotional | 8 |
| abstract_inverted_index.evaluates | 97 |
| abstract_inverted_index.knowledge | 68 |
| abstract_inverted_index.potential | 30, 150 |
| abstract_inverted_index.research. | 154 |
| abstract_inverted_index.artificial | 34 |
| abstract_inverted_index.comparison | 119 |
| abstract_inverted_index.complexity | 45 |
| abstract_inverted_index.directions | 151 |
| abstract_inverted_index.expression | 26, 56, 74, 84, 100, 146 |
| abstract_inverted_index.literature | 90 |
| abstract_inverted_index.observable | 14 |
| abstract_inverted_index.algorithms. | 102 |
| abstract_inverted_index.application | 78 |
| abstract_inverted_index.combination | 88 |
| abstract_inverted_index.conditions. | 130 |
| abstract_inverted_index.development | 49 |
| abstract_inverted_index.expression, | 9 |
| abstract_inverted_index.importance. | 61 |
| abstract_inverted_index.monitoring, | 38 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.recognition | 27, 57, 101, 147 |
| abstract_inverted_index.significant | 60 |
| abstract_inverted_index.advancements | 140 |
| abstract_inverted_index.applications | 32 |
| abstract_inverted_index.experimental | 93 |
| abstract_inverted_index.expressions, | 1, 47 |
| abstract_inverted_index.foundational | 67 |
| abstract_inverted_index.intelligence | 35 |
| abstract_inverted_index.recognition, | 75 |
| abstract_inverted_index.recognition. | 85 |
| abstract_inverted_index.Consequently, | 24 |
| abstract_inverted_index.Convolutional | 112 |
| abstract_inverted_index.architectures | 122 |
| abstract_inverted_index.systematically | 64 |
| abstract_inverted_index.characteristics, | 124 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5006470125 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.83556067 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |