Deep-Learning-Based Pre-Layout Parasitic Capacitance Prediction on SRAM Designs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.06549
To achieve higher system energy efficiency, SRAM in SoCs is often customized. The parasitic effects cause notable discrepancies between pre-layout and post-layout circuit simulations, leading to difficulty in converging design parameters and excessive design iterations. Is it possible to well predict the parasitics based on the pre-layout circuit, so as to perform parasitic-aware pre-layout simulation? In this work, we propose a deep-learning-based 2-stage model to accurately predict these parasitics in pre-layout stages. The model combines a Graph Neural Network (GNN) classifier and Multi-Layer Perceptron (MLP) regressors, effectively managing class imbalance of the net parasitics in SRAM circuits. We also employ Focal Loss to mitigate the impact of abundant internal net samples and integrate subcircuit information into the graph to abstract the hierarchical structure of schematics. Experiments on 4 real SRAM designs show that our approach not only surpasses the state-of-the-art model in parasitic prediction by a maximum of 19X reduction of error but also significantly boosts the simulation process by up to 598X speedup.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.06549
- https://arxiv.org/pdf/2507.06549
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416102643
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416102643Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.06549Digital Object Identifier
- Title
-
Deep-Learning-Based Pre-Layout Parasitic Capacitance Prediction on SRAM DesignsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-09Full publication date if available
- Authors
-
Shan Shen, Dingcheng Yang, Yuyang Xie, Chunyan Pei, Wenjian Yu, Bei YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.06549Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.06549Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.06549Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416102643 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.06549 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.06549 |
| ids.openalex | https://openalex.org/W4416102643 |
| fwci | |
| type | preprint |
| title | Deep-Learning-Based Pre-Layout Parasitic Capacitance Prediction on SRAM Designs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.06549 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.06549 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.06549 |
| locations[1].id | doi:10.48550/arxiv.2507.06549 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.06549 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5078618657 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1383-463X |
| authorships[0].author.display_name | Shan Shen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shen, Shan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100636872 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6117-554X |
| authorships[1].author.display_name | Dingcheng Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Dingcheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002856991 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3152-1936 |
| authorships[2].author.display_name | Yuyang Xie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xie, Yuyang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032253165 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chunyan Pei |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pei, Chunyan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053437305 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4897-7251 |
| authorships[4].author.display_name | Wenjian Yu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yu, Wenjian |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5051340429 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6406-4810 |
| authorships[5].author.display_name | Bei Yu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yu, Bei |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.06549 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep-Learning-Based Pre-Layout Parasitic Capacitance Prediction on SRAM Designs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T08:54:33.103737 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.06549 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.06549 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.06549 |
| primary_location.id | pmh:oai:arXiv.org:2507.06549 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.06549 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.06549 |
| publication_date | 2025-07-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 127 |
| abstract_inverted_index.a | 60, 75, 145 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.Is | 35 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.We | 97 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.by | 144, 159 |
| abstract_inverted_index.in | 7, 27, 69, 94, 141 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.it | 36 |
| abstract_inverted_index.of | 90, 106, 123, 147, 150 |
| abstract_inverted_index.on | 44, 126 |
| abstract_inverted_index.so | 48 |
| abstract_inverted_index.to | 25, 38, 50, 64, 102, 118, 161 |
| abstract_inverted_index.up | 160 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.19X | 148 |
| abstract_inverted_index.The | 12, 72 |
| abstract_inverted_index.and | 20, 31, 81, 111 |
| abstract_inverted_index.but | 152 |
| abstract_inverted_index.net | 92, 109 |
| abstract_inverted_index.not | 135 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 41, 45, 91, 104, 116, 120, 138, 156 |
| abstract_inverted_index.598X | 162 |
| abstract_inverted_index.Loss | 101 |
| abstract_inverted_index.SRAM | 6, 95, 129 |
| abstract_inverted_index.SoCs | 8 |
| abstract_inverted_index.also | 98, 153 |
| abstract_inverted_index.into | 115 |
| abstract_inverted_index.only | 136 |
| abstract_inverted_index.real | 128 |
| abstract_inverted_index.show | 131 |
| abstract_inverted_index.that | 132 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.well | 39 |
| abstract_inverted_index.(GNN) | 79 |
| abstract_inverted_index.(MLP) | 84 |
| abstract_inverted_index.Focal | 100 |
| abstract_inverted_index.Graph | 76 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.cause | 15 |
| abstract_inverted_index.class | 88 |
| abstract_inverted_index.error | 151 |
| abstract_inverted_index.graph | 117 |
| abstract_inverted_index.model | 63, 73, 140 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.work, | 57 |
| abstract_inverted_index.Neural | 77 |
| abstract_inverted_index.boosts | 155 |
| abstract_inverted_index.design | 29, 33 |
| abstract_inverted_index.employ | 99 |
| abstract_inverted_index.energy | 4 |
| abstract_inverted_index.higher | 2 |
| abstract_inverted_index.impact | 105 |
| abstract_inverted_index.system | 3 |
| abstract_inverted_index.2-stage | 62 |
| abstract_inverted_index.Network | 78 |
| abstract_inverted_index.achieve | 1 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.circuit | 22 |
| abstract_inverted_index.designs | 130 |
| abstract_inverted_index.effects | 14 |
| abstract_inverted_index.leading | 24 |
| abstract_inverted_index.maximum | 146 |
| abstract_inverted_index.notable | 16 |
| abstract_inverted_index.perform | 51 |
| abstract_inverted_index.predict | 40, 66 |
| abstract_inverted_index.process | 158 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.samples | 110 |
| abstract_inverted_index.stages. | 71 |
| abstract_inverted_index.abstract | 119 |
| abstract_inverted_index.abundant | 107 |
| abstract_inverted_index.approach | 134 |
| abstract_inverted_index.circuit, | 47 |
| abstract_inverted_index.combines | 74 |
| abstract_inverted_index.internal | 108 |
| abstract_inverted_index.managing | 87 |
| abstract_inverted_index.mitigate | 103 |
| abstract_inverted_index.possible | 37 |
| abstract_inverted_index.speedup. | 163 |
| abstract_inverted_index.circuits. | 96 |
| abstract_inverted_index.excessive | 32 |
| abstract_inverted_index.imbalance | 89 |
| abstract_inverted_index.integrate | 112 |
| abstract_inverted_index.parasitic | 13, 142 |
| abstract_inverted_index.reduction | 149 |
| abstract_inverted_index.structure | 122 |
| abstract_inverted_index.surpasses | 137 |
| abstract_inverted_index.Perceptron | 83 |
| abstract_inverted_index.accurately | 65 |
| abstract_inverted_index.classifier | 80 |
| abstract_inverted_index.converging | 28 |
| abstract_inverted_index.difficulty | 26 |
| abstract_inverted_index.parameters | 30 |
| abstract_inverted_index.parasitics | 42, 68, 93 |
| abstract_inverted_index.pre-layout | 19, 46, 53, 70 |
| abstract_inverted_index.prediction | 143 |
| abstract_inverted_index.simulation | 157 |
| abstract_inverted_index.subcircuit | 113 |
| abstract_inverted_index.Experiments | 125 |
| abstract_inverted_index.Multi-Layer | 82 |
| abstract_inverted_index.customized. | 11 |
| abstract_inverted_index.effectively | 86 |
| abstract_inverted_index.efficiency, | 5 |
| abstract_inverted_index.information | 114 |
| abstract_inverted_index.iterations. | 34 |
| abstract_inverted_index.post-layout | 21 |
| abstract_inverted_index.regressors, | 85 |
| abstract_inverted_index.schematics. | 124 |
| abstract_inverted_index.simulation? | 54 |
| abstract_inverted_index.hierarchical | 121 |
| abstract_inverted_index.simulations, | 23 |
| abstract_inverted_index.discrepancies | 17 |
| abstract_inverted_index.significantly | 154 |
| abstract_inverted_index.parasitic-aware | 52 |
| abstract_inverted_index.state-of-the-art | 139 |
| abstract_inverted_index.deep-learning-based | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |