Deep learning-based prediction of 3-dimensional silver contact shapes enabling improved quality control in solar cell metallization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyai.2024.100404
The industrial metallization of Si solar cells predominantly relies on screen printing, with silver as the preferred electrode material. However, the design of commercial screens often leads to suboptimal silver usage and increased electrical resistance due to print-related inhomogeneities like mesh marks, constrictions and spreading. Real-time monitoring of quality parameters during production has thus become increasingly critical. Current inline optical quality control systems usually only include 2D visualizations of the printed layout, which limits their effectiveness in quality control. Options that allow 3D measurements are usually slow, expensive, and therefore not worth considering in most cases. This research focuses on the development of a model that can estimate the three-dimensional shape of printed contact fingers from a single 2D image without the need of additional hardware using deep learning. Furthermore, a workflow for the generation of training data, which involves the creation of image pairs from a 2D microscope and a 3D confocal laser scanning microscope (CLSM) to accurately represent solar cell fingers, is presented. After model training, the predicted height maps are compared with the ground truth height maps, and the robustness of the model with respect to a paste variation and screen parameter variation is examined. The results confirm the feasibility and reliability of deep learning-based 3D shape estimation, extending its applicability to new, previously unseen data from screen-printed contact fingers. With a structural similarity index (SSIM) score of 0.76, a strong correlation between the estimated and ground truth height maps is established. In summary, our deep learning-based approach for height map estimation offers an effective and reliable solution for fast inline detection and analysis of the cross-sectional area of the printed contact fingers.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.egyai.2024.100404
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401001448
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401001448Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.egyai.2024.100404Digital Object Identifier
- Title
-
Deep learning-based prediction of 3-dimensional silver contact shapes enabling improved quality control in solar cell metallizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-25Full publication date if available
- Authors
-
Marius Singler, Akshay Patil, Linda Ney, Andreas Lorenz, Sebastian Tepner, Florian ClementList of authors in order
- Landing page
-
https://doi.org/10.1016/j.egyai.2024.100404Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.egyai.2024.100404Direct OA link when available
- Concepts
-
Ground truth, Workflow, Deep learning, Robustness (evolution), Artificial intelligence, Computer science, Computer vision, Image quality, Quality (philosophy), Image (mathematics), Gene, Chemistry, Database, Biochemistry, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401001448 |
|---|---|
| doi | https://doi.org/10.1016/j.egyai.2024.100404 |
| ids.doi | https://doi.org/10.1016/j.egyai.2024.100404 |
| ids.openalex | https://openalex.org/W4401001448 |
| fwci | 0.68104183 |
| type | article |
| title | Deep learning-based prediction of 3-dimensional silver contact shapes enabling improved quality control in solar cell metallization |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 100404 |
| biblio.first_page | 100404 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9977999925613403 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10623 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9635000228881836 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Thin-Film Transistor Technologies |
| topics[2].id | https://openalex.org/T10624 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9423999786376953 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Silicon and Solar Cell Technologies |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C146849305 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7163763642311096 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[0].display_name | Ground truth |
| concepts[1].id | https://openalex.org/C177212765 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6959191560745239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[1].display_name | Workflow |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6561751365661621 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6351249814033508 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5992895364761353 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5931918621063232 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4356400966644287 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C55020928 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4203760623931885 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[7].display_name | Image quality |
| concepts[8].id | https://openalex.org/C2779530757 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4153746962547302 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[8].display_name | Quality (philosophy) |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.22101768851280212 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/ground-truth |
| keywords[0].score | 0.7163763642311096 |
| keywords[0].display_name | Ground truth |
| keywords[1].id | https://openalex.org/keywords/workflow |
| keywords[1].score | 0.6959191560745239 |
| keywords[1].display_name | Workflow |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6561751365661621 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6351249814033508 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5992895364761353 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5931918621063232 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4356400966644287 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/image-quality |
| keywords[7].score | 0.4203760623931885 |
| keywords[7].display_name | Image quality |
| keywords[8].id | https://openalex.org/keywords/quality |
| keywords[8].score | 0.4153746962547302 |
| keywords[8].display_name | Quality (philosophy) |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.22101768851280212 |
| keywords[9].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1016/j.egyai.2024.100404 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210241048 |
| locations[0].source.issn | 2666-5468 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-5468 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy and AI |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy and AI |
| locations[0].landing_page_url | https://doi.org/10.1016/j.egyai.2024.100404 |
| locations[1].id | pmh:oai:doaj.org/article:3c708a78f1c54f55a2aae6fe060e693d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy and AI, Vol 17, Iss , Pp 100404- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/3c708a78f1c54f55a2aae6fe060e693d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5039390956 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-3970-408X |
| authorships[0].author.display_name | Marius Singler |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[0].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[0].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marius Singler |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[1].author.id | https://openalex.org/A5009212189 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Akshay Patil |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[1].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[1].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Akshay Patil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[2].author.id | https://openalex.org/A5070764457 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5076-551X |
| authorships[2].author.display_name | Linda Ney |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[2].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[2].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Linda Ney |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[3].author.id | https://openalex.org/A5029729131 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4335-8307 |
| authorships[3].author.display_name | Andreas Lorenz |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[3].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[3].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andreas Lorenz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[4].author.id | https://openalex.org/A5088162178 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8611-5295 |
| authorships[4].author.display_name | Sebastian Tepner |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[4].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[4].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sebastian Tepner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[5].author.id | https://openalex.org/A5113893036 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Florian Clement |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210117272 |
| authorships[5].affiliations[0].raw_affiliation_string | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I4210117272 |
| authorships[5].institutions[0].ror | https://ror.org/02kfzvh91 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210117272, https://openalex.org/I4923324 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Fraunhofer Institute for Solar Energy Systems |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Florian Clement |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.egyai.2024.100404 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning-based prediction of 3-dimensional silver contact shapes enabling improved quality control in solar cell metallization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9977999925613403 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W188202134, https://openalex.org/W4255934811, https://openalex.org/W2465382974, https://openalex.org/W2010229520 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.egyai.2024.100404 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210241048 |
| best_oa_location.source.issn | 2666-5468 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-5468 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy and AI |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy and AI |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.egyai.2024.100404 |
| primary_location.id | doi:10.1016/j.egyai.2024.100404 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210241048 |
| primary_location.source.issn | 2666-5468 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-5468 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy and AI |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy and AI |
| primary_location.landing_page_url | https://doi.org/10.1016/j.egyai.2024.100404 |
| publication_date | 2024-07-25 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3095627569, https://openalex.org/W2917980266, https://openalex.org/W6728139224, https://openalex.org/W3132460628, https://openalex.org/W4281665019, https://openalex.org/W3042242601, https://openalex.org/W2973484607, https://openalex.org/W6847346830, https://openalex.org/W2787931417, https://openalex.org/W6733401882, https://openalex.org/W3176584092, https://openalex.org/W3048405501, https://openalex.org/W6779751291, https://openalex.org/W3088144239, https://openalex.org/W3131065411, https://openalex.org/W1522301498, https://openalex.org/W2213612645, https://openalex.org/W6650313187, https://openalex.org/W4308416696, https://openalex.org/W3216316500, https://openalex.org/W2049266248, https://openalex.org/W2919234133, https://openalex.org/W6680017387, https://openalex.org/W2623790698, https://openalex.org/W3006076803, https://openalex.org/W3209599463, https://openalex.org/W3213812295, https://openalex.org/W4238474515, https://openalex.org/W4285539827, https://openalex.org/W3152218910, https://openalex.org/W3085433944 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 103, 116, 130, 146, 150, 189, 224, 232 |
| abstract_inverted_index.2D | 66, 118, 147 |
| abstract_inverted_index.3D | 82, 151, 208 |
| abstract_inverted_index.In | 245 |
| abstract_inverted_index.Si | 4 |
| abstract_inverted_index.an | 256 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.in | 76, 93 |
| abstract_inverted_index.is | 163, 196, 243 |
| abstract_inverted_index.of | 3, 22, 47, 68, 102, 111, 123, 135, 142, 183, 205, 230, 267, 271 |
| abstract_inverted_index.on | 9, 99 |
| abstract_inverted_index.to | 27, 36, 157, 188, 214 |
| abstract_inverted_index.The | 0, 198 |
| abstract_inverted_index.and | 31, 43, 88, 149, 180, 192, 203, 238, 258, 265 |
| abstract_inverted_index.are | 84, 172 |
| abstract_inverted_index.can | 106 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.for | 132, 251, 261 |
| abstract_inverted_index.has | 52 |
| abstract_inverted_index.its | 212 |
| abstract_inverted_index.map | 253 |
| abstract_inverted_index.not | 90 |
| abstract_inverted_index.our | 247 |
| abstract_inverted_index.the | 15, 20, 69, 100, 108, 121, 133, 140, 168, 175, 181, 184, 201, 236, 268, 272 |
| abstract_inverted_index.This | 96 |
| abstract_inverted_index.With | 223 |
| abstract_inverted_index.area | 270 |
| abstract_inverted_index.cell | 161 |
| abstract_inverted_index.data | 218 |
| abstract_inverted_index.deep | 127, 206, 248 |
| abstract_inverted_index.fast | 262 |
| abstract_inverted_index.from | 115, 145, 219 |
| abstract_inverted_index.like | 39 |
| abstract_inverted_index.maps | 171, 242 |
| abstract_inverted_index.mesh | 40 |
| abstract_inverted_index.most | 94 |
| abstract_inverted_index.need | 122 |
| abstract_inverted_index.new, | 215 |
| abstract_inverted_index.only | 64 |
| abstract_inverted_index.that | 80, 105 |
| abstract_inverted_index.thus | 53 |
| abstract_inverted_index.with | 12, 174, 186 |
| abstract_inverted_index.0.76, | 231 |
| abstract_inverted_index.After | 165 |
| abstract_inverted_index.allow | 81 |
| abstract_inverted_index.cells | 6 |
| abstract_inverted_index.data, | 137 |
| abstract_inverted_index.image | 119, 143 |
| abstract_inverted_index.index | 227 |
| abstract_inverted_index.laser | 153 |
| abstract_inverted_index.leads | 26 |
| abstract_inverted_index.maps, | 179 |
| abstract_inverted_index.model | 104, 166, 185 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.pairs | 144 |
| abstract_inverted_index.paste | 190 |
| abstract_inverted_index.score | 229 |
| abstract_inverted_index.shape | 110, 209 |
| abstract_inverted_index.slow, | 86 |
| abstract_inverted_index.solar | 5, 160 |
| abstract_inverted_index.their | 74 |
| abstract_inverted_index.truth | 177, 240 |
| abstract_inverted_index.usage | 30 |
| abstract_inverted_index.using | 126 |
| abstract_inverted_index.which | 72, 138 |
| abstract_inverted_index.worth | 91 |
| abstract_inverted_index.(CLSM) | 156 |
| abstract_inverted_index.(SSIM) | 228 |
| abstract_inverted_index.become | 54 |
| abstract_inverted_index.cases. | 95 |
| abstract_inverted_index.design | 21 |
| abstract_inverted_index.during | 50 |
| abstract_inverted_index.ground | 176, 239 |
| abstract_inverted_index.height | 170, 178, 241, 252 |
| abstract_inverted_index.inline | 58, 263 |
| abstract_inverted_index.limits | 73 |
| abstract_inverted_index.marks, | 41 |
| abstract_inverted_index.offers | 255 |
| abstract_inverted_index.relies | 8 |
| abstract_inverted_index.screen | 10, 193 |
| abstract_inverted_index.silver | 13, 29 |
| abstract_inverted_index.single | 117 |
| abstract_inverted_index.strong | 233 |
| abstract_inverted_index.unseen | 217 |
| abstract_inverted_index.Current | 57 |
| abstract_inverted_index.Options | 79 |
| abstract_inverted_index.between | 235 |
| abstract_inverted_index.confirm | 200 |
| abstract_inverted_index.contact | 113, 221, 274 |
| abstract_inverted_index.control | 61 |
| abstract_inverted_index.fingers | 114 |
| abstract_inverted_index.focuses | 98 |
| abstract_inverted_index.include | 65 |
| abstract_inverted_index.layout, | 71 |
| abstract_inverted_index.optical | 59 |
| abstract_inverted_index.printed | 70, 112, 273 |
| abstract_inverted_index.quality | 48, 60, 77 |
| abstract_inverted_index.respect | 187 |
| abstract_inverted_index.results | 199 |
| abstract_inverted_index.screens | 24 |
| abstract_inverted_index.systems | 62 |
| abstract_inverted_index.usually | 63, 85 |
| abstract_inverted_index.without | 120 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.analysis | 266 |
| abstract_inverted_index.approach | 250 |
| abstract_inverted_index.compared | 173 |
| abstract_inverted_index.confocal | 152 |
| abstract_inverted_index.control. | 78 |
| abstract_inverted_index.creation | 141 |
| abstract_inverted_index.estimate | 107 |
| abstract_inverted_index.fingers, | 162 |
| abstract_inverted_index.fingers. | 222, 275 |
| abstract_inverted_index.hardware | 125 |
| abstract_inverted_index.involves | 139 |
| abstract_inverted_index.reliable | 259 |
| abstract_inverted_index.research | 97 |
| abstract_inverted_index.scanning | 154 |
| abstract_inverted_index.solution | 260 |
| abstract_inverted_index.summary, | 246 |
| abstract_inverted_index.training | 136 |
| abstract_inverted_index.workflow | 131 |
| abstract_inverted_index.Real-time | 45 |
| abstract_inverted_index.critical. | 56 |
| abstract_inverted_index.detection | 264 |
| abstract_inverted_index.effective | 257 |
| abstract_inverted_index.electrode | 17 |
| abstract_inverted_index.estimated | 237 |
| abstract_inverted_index.examined. | 197 |
| abstract_inverted_index.extending | 211 |
| abstract_inverted_index.increased | 32 |
| abstract_inverted_index.learning. | 128 |
| abstract_inverted_index.material. | 18 |
| abstract_inverted_index.parameter | 194 |
| abstract_inverted_index.predicted | 169 |
| abstract_inverted_index.preferred | 16 |
| abstract_inverted_index.printing, | 11 |
| abstract_inverted_index.represent | 159 |
| abstract_inverted_index.therefore | 89 |
| abstract_inverted_index.training, | 167 |
| abstract_inverted_index.variation | 191, 195 |
| abstract_inverted_index.accurately | 158 |
| abstract_inverted_index.additional | 124 |
| abstract_inverted_index.commercial | 23 |
| abstract_inverted_index.electrical | 33 |
| abstract_inverted_index.estimation | 254 |
| abstract_inverted_index.expensive, | 87 |
| abstract_inverted_index.generation | 134 |
| abstract_inverted_index.industrial | 1 |
| abstract_inverted_index.microscope | 148, 155 |
| abstract_inverted_index.monitoring | 46 |
| abstract_inverted_index.parameters | 49 |
| abstract_inverted_index.presented. | 164 |
| abstract_inverted_index.previously | 216 |
| abstract_inverted_index.production | 51 |
| abstract_inverted_index.resistance | 34 |
| abstract_inverted_index.robustness | 182 |
| abstract_inverted_index.similarity | 226 |
| abstract_inverted_index.spreading. | 44 |
| abstract_inverted_index.structural | 225 |
| abstract_inverted_index.suboptimal | 28 |
| abstract_inverted_index.considering | 92 |
| abstract_inverted_index.correlation | 234 |
| abstract_inverted_index.development | 101 |
| abstract_inverted_index.estimation, | 210 |
| abstract_inverted_index.feasibility | 202 |
| abstract_inverted_index.reliability | 204 |
| abstract_inverted_index.Furthermore, | 129 |
| abstract_inverted_index.established. | 244 |
| abstract_inverted_index.increasingly | 55 |
| abstract_inverted_index.measurements | 83 |
| abstract_inverted_index.applicability | 213 |
| abstract_inverted_index.constrictions | 42 |
| abstract_inverted_index.effectiveness | 75 |
| abstract_inverted_index.metallization | 2 |
| abstract_inverted_index.predominantly | 7 |
| abstract_inverted_index.print-related | 37 |
| abstract_inverted_index.learning-based | 207, 249 |
| abstract_inverted_index.screen-printed | 220 |
| abstract_inverted_index.visualizations | 67 |
| abstract_inverted_index.cross-sectional | 269 |
| abstract_inverted_index.inhomogeneities | 38 |
| abstract_inverted_index.three-dimensional | 109 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5039390956 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I4210117272 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.67030403 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |