Deep Learning-based Signal Identification in Wireless Communication Systems: A Comparative Analysis on 3G, LTE, and 5G Standards Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.58564/ijser.3.3.2024.224
Efficient signal identification in wireless communication systems is critical for optimal service provision. However, the complexity of contemporary criteria and factors such as noise and fading make it hard to do so. To address this problem, convolutional neural networks (CNNs) are used to classify signals using 3G, LTE, and 5G standards. This approach involves creating a range of datasets with different Signal-to-Noise Ratios (SNR) and introducing Rayleigh fading to represent real-world environments. Two CNN architectures for dependable assessment, VGG19 and ResNet18, with robust 5-fold cross-validation, are employed. To test model resilience, the dataset includes Poisson noise and Thermal noise. Despite noise and fading in the system, VGG19 and ResNet18 show high accuracies across all standards. However, ResNet18 demonstrates relatively better performance, especially under Poisson noise conditions. Both models also have good signal detection from among noises generated by Poisson thermal or Rayleigh distribution. ResNet18 demonstrates a commendable average accuracy of 99.52%, while VGG19 Net demonstrates 97.14%. CNNs effectively identify signals amidst noise scenarios and contribute to advancing deep learning techniques in signal processing, enhancing the reliability of wireless communication systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.58564/ijser.3.3.2024.224
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405211339
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405211339Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.58564/ijser.3.3.2024.224Digital Object Identifier
- Title
-
Deep Learning-based Signal Identification in Wireless Communication Systems: A Comparative Analysis on 3G, LTE, and 5G StandardsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-10Full publication date if available
- Authors
-
Alaa Hussein Abdulaal, Nooruldeen Haider Dheyaa, Ali H. Abdulwahhab, Riyam Ali Yassin, morteza valizadeh, Baraa M. Albaker, Ammar Saad MustafList of authors in order
- Landing page
-
https://doi.org/10.58564/ijser.3.3.2024.224Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.58564/ijser.3.3.2024.224Direct OA link when available
- Concepts
-
Identification (biology), Computer science, Wireless, SIGNAL (programming language), Telecommunications, Computer network, Biology, Botany, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405211339 |
|---|---|
| doi | https://doi.org/10.58564/ijser.3.3.2024.224 |
| ids.doi | https://doi.org/10.58564/ijser.3.3.2024.224 |
| ids.openalex | https://openalex.org/W4405211339 |
| fwci | 0.63877855 |
| type | article |
| title | Deep Learning-based Signal Identification in Wireless Communication Systems: A Comparative Analysis on 3G, LTE, and 5G Standards |
| biblio.issue | 3 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12131 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Wireless Signal Modulation Classification |
| topics[1].id | https://openalex.org/T13905 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9509000182151794 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Telecommunications and Broadcasting Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6047037243843079 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5787755846977234 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C555944384 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5331342220306396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[2].display_name | Wireless |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4807707667350769 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C76155785 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4339596629142761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[4].display_name | Telecommunications |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3278403878211975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C59822182 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[7].display_name | Botany |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.6047037243843079 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5787755846977234 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/wireless |
| keywords[2].score | 0.5331342220306396 |
| keywords[2].display_name | Wireless |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.4807707667350769 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/telecommunications |
| keywords[4].score | 0.4339596629142761 |
| keywords[4].display_name | Telecommunications |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.3278403878211975 |
| keywords[5].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.58564/ijser.3.3.2024.224 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387279042 |
| locations[0].source.issn | 2710-2165 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2710-2165 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Al-Iraqia Journal of Scientific Engineering Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Al-Iraqia Journal of Scientific Engineering Research |
| locations[0].landing_page_url | https://doi.org/10.58564/ijser.3.3.2024.224 |
| locations[1].id | pmh:oai:doaj.org/article:9795bd0540f54488828630e8239cec1f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Al-Iraqia Journal for Scientific Engineering Research, Vol 3, Iss 3 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/9795bd0540f54488828630e8239cec1f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A4282591587 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2316-2822 |
| authorships[0].author.display_name | Alaa Hussein Abdulaal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alaa Hussein Abdulaal |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A5114908870 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nooruldeen Haider Dheyaa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nooruldeen Haider Dheyaa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2920881332 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6041-5185 |
| authorships[2].author.display_name | Ali H. Abdulwahhab |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ali H. Abdulwahhab |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109688401 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Riyam Ali Yassin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Riyam Ali Yassin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2140551174 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2204-3303 |
| authorships[4].author.display_name | morteza valizadeh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Morteza Valizadeh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A4273058571 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Baraa M. Albaker |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Baraa M. Albaker |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5117605804 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ammar Saad Mustaf |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ammar Saad Mustaf |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.58564/ijser.3.3.2024.224 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-11T00:00:00 |
| display_name | Deep Learning-based Signal Identification in Wireless Communication Systems: A Comparative Analysis on 3G, LTE, and 5G Standards |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12131 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Wireless Signal Modulation Classification |
| related_works | https://openalex.org/W2898732673, https://openalex.org/W2410053581, https://openalex.org/W2383658677, https://openalex.org/W3123203398, https://openalex.org/W2111375262, https://openalex.org/W2317728013, https://openalex.org/W1991205173, https://openalex.org/W2109048960, https://openalex.org/W1972473893, https://openalex.org/W2466435674 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.58564/ijser.3.3.2024.224 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387279042 |
| best_oa_location.source.issn | 2710-2165 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2710-2165 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Al-Iraqia Journal of Scientific Engineering Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Al-Iraqia Journal of Scientific Engineering Research |
| best_oa_location.landing_page_url | https://doi.org/10.58564/ijser.3.3.2024.224 |
| primary_location.id | doi:10.58564/ijser.3.3.2024.224 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387279042 |
| primary_location.source.issn | 2710-2165 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2710-2165 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Al-Iraqia Journal of Scientific Engineering Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Al-Iraqia Journal of Scientific Engineering Research |
| primary_location.landing_page_url | https://doi.org/10.58564/ijser.3.3.2024.224 |
| publication_date | 2024-12-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 145 |
| abstract_inverted_index.5G | 49 |
| abstract_inverted_index.To | 32, 87 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 137 |
| abstract_inverted_index.do | 30 |
| abstract_inverted_index.in | 3, 103, 170 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.it | 27 |
| abstract_inverted_index.of | 16, 57, 149, 176 |
| abstract_inverted_index.or | 140 |
| abstract_inverted_index.to | 29, 42, 68, 165 |
| abstract_inverted_index.3G, | 46 |
| abstract_inverted_index.CNN | 73 |
| abstract_inverted_index.Net | 153 |
| abstract_inverted_index.Two | 72 |
| abstract_inverted_index.all | 113 |
| abstract_inverted_index.and | 19, 24, 48, 64, 79, 96, 101, 107, 163 |
| abstract_inverted_index.are | 40, 85 |
| abstract_inverted_index.for | 9, 75 |
| abstract_inverted_index.so. | 31 |
| abstract_inverted_index.the | 14, 91, 104, 174 |
| abstract_inverted_index.Both | 126 |
| abstract_inverted_index.CNNs | 156 |
| abstract_inverted_index.LTE, | 47 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.also | 128 |
| abstract_inverted_index.deep | 167 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.good | 130 |
| abstract_inverted_index.hard | 28 |
| abstract_inverted_index.have | 129 |
| abstract_inverted_index.high | 110 |
| abstract_inverted_index.make | 26 |
| abstract_inverted_index.show | 109 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.test | 88 |
| abstract_inverted_index.this | 34 |
| abstract_inverted_index.used | 41 |
| abstract_inverted_index.with | 59, 81 |
| abstract_inverted_index.(SNR) | 63 |
| abstract_inverted_index.VGG19 | 78, 106, 152 |
| abstract_inverted_index.among | 134 |
| abstract_inverted_index.model | 89 |
| abstract_inverted_index.noise | 23, 95, 100, 124, 161 |
| abstract_inverted_index.range | 56 |
| abstract_inverted_index.under | 122 |
| abstract_inverted_index.using | 45 |
| abstract_inverted_index.while | 151 |
| abstract_inverted_index.(CNNs) | 39 |
| abstract_inverted_index.5-fold | 83 |
| abstract_inverted_index.Ratios | 62 |
| abstract_inverted_index.across | 112 |
| abstract_inverted_index.amidst | 160 |
| abstract_inverted_index.better | 119 |
| abstract_inverted_index.fading | 25, 67, 102 |
| abstract_inverted_index.models | 127 |
| abstract_inverted_index.neural | 37 |
| abstract_inverted_index.noise. | 98 |
| abstract_inverted_index.noises | 135 |
| abstract_inverted_index.robust | 82 |
| abstract_inverted_index.signal | 1, 131, 171 |
| abstract_inverted_index.97.14%. | 155 |
| abstract_inverted_index.99.52%, | 150 |
| abstract_inverted_index.Despite | 99 |
| abstract_inverted_index.Poisson | 94, 123, 138 |
| abstract_inverted_index.Thermal | 97 |
| abstract_inverted_index.address | 33 |
| abstract_inverted_index.average | 147 |
| abstract_inverted_index.dataset | 92 |
| abstract_inverted_index.factors | 20 |
| abstract_inverted_index.optimal | 10 |
| abstract_inverted_index.service | 11 |
| abstract_inverted_index.signals | 44, 159 |
| abstract_inverted_index.system, | 105 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.thermal | 139 |
| abstract_inverted_index.However, | 13, 115 |
| abstract_inverted_index.Rayleigh | 66, 141 |
| abstract_inverted_index.ResNet18 | 108, 116, 143 |
| abstract_inverted_index.accuracy | 148 |
| abstract_inverted_index.approach | 52 |
| abstract_inverted_index.classify | 43 |
| abstract_inverted_index.creating | 54 |
| abstract_inverted_index.criteria | 18 |
| abstract_inverted_index.critical | 8 |
| abstract_inverted_index.datasets | 58 |
| abstract_inverted_index.identify | 158 |
| abstract_inverted_index.includes | 93 |
| abstract_inverted_index.involves | 53 |
| abstract_inverted_index.learning | 168 |
| abstract_inverted_index.networks | 38 |
| abstract_inverted_index.problem, | 35 |
| abstract_inverted_index.systems. | 179 |
| abstract_inverted_index.wireless | 4, 177 |
| abstract_inverted_index.Efficient | 0 |
| abstract_inverted_index.ResNet18, | 80 |
| abstract_inverted_index.advancing | 166 |
| abstract_inverted_index.detection | 132 |
| abstract_inverted_index.different | 60 |
| abstract_inverted_index.employed. | 86 |
| abstract_inverted_index.enhancing | 173 |
| abstract_inverted_index.generated | 136 |
| abstract_inverted_index.represent | 69 |
| abstract_inverted_index.scenarios | 162 |
| abstract_inverted_index.accuracies | 111 |
| abstract_inverted_index.complexity | 15 |
| abstract_inverted_index.contribute | 164 |
| abstract_inverted_index.dependable | 76 |
| abstract_inverted_index.especially | 121 |
| abstract_inverted_index.provision. | 12 |
| abstract_inverted_index.real-world | 70 |
| abstract_inverted_index.relatively | 118 |
| abstract_inverted_index.standards. | 50, 114 |
| abstract_inverted_index.techniques | 169 |
| abstract_inverted_index.assessment, | 77 |
| abstract_inverted_index.commendable | 146 |
| abstract_inverted_index.conditions. | 125 |
| abstract_inverted_index.effectively | 157 |
| abstract_inverted_index.introducing | 65 |
| abstract_inverted_index.processing, | 172 |
| abstract_inverted_index.reliability | 175 |
| abstract_inverted_index.resilience, | 90 |
| abstract_inverted_index.contemporary | 17 |
| abstract_inverted_index.demonstrates | 117, 144, 154 |
| abstract_inverted_index.performance, | 120 |
| abstract_inverted_index.architectures | 74 |
| abstract_inverted_index.communication | 5, 178 |
| abstract_inverted_index.convolutional | 36 |
| abstract_inverted_index.distribution. | 142 |
| abstract_inverted_index.environments. | 71 |
| abstract_inverted_index.identification | 2 |
| abstract_inverted_index.Signal-to-Noise | 61 |
| abstract_inverted_index.cross-validation, | 84 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.73616338 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |