Deep Learning Bridges Histology and Transcriptomics to Predict Molecular Subtypes and Outcomes in Muscle-Invasive Bladder Cancer Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.10.23.684013
Muscle-Invasive Bladder Cancer (MIBC) is a heterogeneous disease with distinct molecular subtypes influencing prognosis and therapeutic response. However, molecular profiling through RNA sequencing remains costly, time-consuming and complicated by intratumoral heterogeneity. We developed a Deep Learning (DL) approach to infer molecular subtypes from routine histopathological slides and to evaluate its prognostic value in patients treated with neoadjuvant chemotherapy (NAC). We developed an DL-model predicting the expression of 848 subtype-associated genes from histological images of transurethral resection of bladder tumor, enabling spatial molecular subtyping at tile level. The model was trained on 297 NAC-treated patients from the VESPER clinical trial and evaluated on three independent cohorts (COBLAnCE, n=224; Saint-Louis, n=30 and TCGA, n=315), covering diverse staining protocols and scanner types. Spatial transcriptomics from six VESPER patients confirmed the spatial consistency of the inferred expression profiles. Our approach achieved a ROC AUC of 0.94 for molecular subtype prediction, with 95% of genes significantly predicted, demonstrating its ability to capture transcriptomic dysregulations from histological morphology. Predicted expression maps revealed spatially coherent patterns and intratumoral molecular heterogeneity. Importantly, tumors predicted with basal/squamous features (pure or mixed), were associated with significantly worse progression-free and overall survival after NAC (log-rank p=0.014 and 0.037, respectively). This DL-based framework enables accurate and spatially resolved inference of gene expression and molecular subtypes in MIBC without sequencing. These findings could improve patient stratification in clinical practice and support the design of more targeted clinical trials. Further validation in larger cohorts is needed before routine clinical implementation.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.1101/2025.10.23.684013
- OA Status
- green
- References
- 34
- OpenAlex ID
- https://openalex.org/W4415528249
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415528249Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.10.23.684013Digital Object Identifier
- Title
-
Deep Learning Bridges Histology and Transcriptomics to Predict Molecular Subtypes and Outcomes in Muscle-Invasive Bladder CancerWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-24Full publication date if available
- Authors
-
Alice Blondel, Clémentine Krucker, Valentin Harter, Melissa Da Silva, Clarice S. Groeneveld, Aurélien de Reyniès, Maryam Karimi, Simone Benhamou, Isabelle Bernard-Pierrot, Christian Pfister, Stéphane Culine, Yves Allory, Thomas Walter, Jacqueline FontugneList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.10.23.684013Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1101/2025.10.23.684013Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
34Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415528249 |
|---|---|
| doi | https://doi.org/10.1101/2025.10.23.684013 |
| ids.doi | https://doi.org/10.1101/2025.10.23.684013 |
| ids.openalex | https://openalex.org/W4415528249 |
| fwci | 0.0 |
| type | article |
| title | Deep Learning Bridges Histology and Transcriptomics to Predict Molecular Subtypes and Outcomes in Muscle-Invasive Bladder Cancer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10458 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9344000220298767 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Bladder and Urothelial Cancer Treatments |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.1101/2025.10.23.684013 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.10.23.684013 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060538800 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5826-0310 |
| authorships[0].author.display_name | Alice Blondel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alice Blondel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112857098 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Clémentine Krucker |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Clementine Krucker |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030309049 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6545-8130 |
| authorships[2].author.display_name | Valentin Harter |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Valentin Harter |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065805948 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Melissa Da Silva |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Melissa Da Silva |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5107071774 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5222-2586 |
| authorships[4].author.display_name | Clarice S. Groeneveld |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Clarice Groeneveld |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042627121 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1328-5290 |
| authorships[5].author.display_name | Aurélien de Reyniès |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Aurelien De Reynies |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102875053 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3301-8795 |
| authorships[6].author.display_name | Maryam Karimi |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Maryam Karimi |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5012460414 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5853-8047 |
| authorships[7].author.display_name | Simone Benhamou |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Simone Benhamou |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5113567631 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Isabelle Bernard-Pierrot |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Isabelle Bernard-Pierrot |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5029703857 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5920-4468 |
| authorships[9].author.display_name | Christian Pfister |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Christian Pfister |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5090993023 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1470-2698 |
| authorships[10].author.display_name | Stéphane Culine |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Stephane Culine |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5090538658 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-5526-077X |
| authorships[11].author.display_name | Yves Allory |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Yves Allory |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5007925107 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-4199-4561 |
| authorships[12].author.display_name | Thomas Walter |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Thomas Walter |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5112469978 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Jacqueline Fontugne |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Jacqueline Fontugne |
| authorships[13].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1101/2025.10.23.684013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-25T00:00:00 |
| display_name | Deep Learning Bridges Histology and Transcriptomics to Predict Molecular Subtypes and Outcomes in Muscle-Invasive Bladder Cancer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10458 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9344000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Bladder and Urothelial Cancer Treatments |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.10.23.684013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.10.23.684013 |
| primary_location.id | doi:10.1101/2025.10.23.684013 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.10.23.684013 |
| publication_date | 2025-10-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2162130153, https://openalex.org/W2462649057, https://openalex.org/W2473162054, https://openalex.org/W2791111208, https://openalex.org/W2068523052, https://openalex.org/W2763670669, https://openalex.org/W2975497362, https://openalex.org/W3119281926, https://openalex.org/W3088018720, https://openalex.org/W4402565861, https://openalex.org/W3214396654, https://openalex.org/W2893724680, https://openalex.org/W3044996171, https://openalex.org/W3043835773, https://openalex.org/W4407792349, https://openalex.org/W3043049467, https://openalex.org/W3018647685, https://openalex.org/W4404349892, https://openalex.org/W4391722054, https://openalex.org/W4353065773, https://openalex.org/W3081622691, https://openalex.org/W2547389559, https://openalex.org/W6959630625, https://openalex.org/W3203168750, https://openalex.org/W3094502228, https://openalex.org/W2165698076, https://openalex.org/W2956228567, https://openalex.org/W2952481429, https://openalex.org/W4408738796, https://openalex.org/W4299518610, https://openalex.org/W4385285835, https://openalex.org/W4392947521, https://openalex.org/W4402220065, https://openalex.org/W4307432965 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 6, 34, 138 |
| abstract_inverted_index.We | 32, 60 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.at | 84 |
| abstract_inverted_index.by | 29 |
| abstract_inverted_index.in | 53, 214, 224, 238 |
| abstract_inverted_index.is | 5, 241 |
| abstract_inverted_index.of | 67, 74, 77, 130, 141, 149, 208, 231 |
| abstract_inverted_index.on | 91, 102 |
| abstract_inverted_index.or | 181 |
| abstract_inverted_index.to | 39, 48, 156 |
| abstract_inverted_index.297 | 92 |
| abstract_inverted_index.848 | 68 |
| abstract_inverted_index.95% | 148 |
| abstract_inverted_index.AUC | 140 |
| abstract_inverted_index.NAC | 193 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.RNA | 22 |
| abstract_inverted_index.ROC | 139 |
| abstract_inverted_index.The | 87 |
| abstract_inverted_index.and | 15, 27, 47, 100, 110, 117, 170, 189, 196, 204, 211, 227 |
| abstract_inverted_index.for | 143 |
| abstract_inverted_index.its | 50, 154 |
| abstract_inverted_index.six | 123 |
| abstract_inverted_index.the | 65, 96, 127, 131, 229 |
| abstract_inverted_index.was | 89 |
| abstract_inverted_index.(DL) | 37 |
| abstract_inverted_index.0.94 | 142 |
| abstract_inverted_index.Deep | 35 |
| abstract_inverted_index.MIBC | 215 |
| abstract_inverted_index.This | 199 |
| abstract_inverted_index.from | 43, 71, 95, 122, 160 |
| abstract_inverted_index.gene | 209 |
| abstract_inverted_index.maps | 165 |
| abstract_inverted_index.more | 232 |
| abstract_inverted_index.n=30 | 109 |
| abstract_inverted_index.tile | 85 |
| abstract_inverted_index.were | 183 |
| abstract_inverted_index.with | 9, 56, 147, 177, 185 |
| abstract_inverted_index.(pure | 180 |
| abstract_inverted_index.TCGA, | 111 |
| abstract_inverted_index.These | 218 |
| abstract_inverted_index.after | 192 |
| abstract_inverted_index.could | 220 |
| abstract_inverted_index.genes | 70, 150 |
| abstract_inverted_index.infer | 40 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.three | 103 |
| abstract_inverted_index.trial | 99 |
| abstract_inverted_index.value | 52 |
| abstract_inverted_index.worse | 187 |
| abstract_inverted_index.(MIBC) | 4 |
| abstract_inverted_index.(NAC). | 59 |
| abstract_inverted_index.0.037, | 197 |
| abstract_inverted_index.Cancer | 3 |
| abstract_inverted_index.VESPER | 97, 124 |
| abstract_inverted_index.before | 243 |
| abstract_inverted_index.design | 230 |
| abstract_inverted_index.images | 73 |
| abstract_inverted_index.larger | 239 |
| abstract_inverted_index.level. | 86 |
| abstract_inverted_index.n=224; | 107 |
| abstract_inverted_index.needed | 242 |
| abstract_inverted_index.slides | 46 |
| abstract_inverted_index.tumor, | 79 |
| abstract_inverted_index.tumors | 175 |
| abstract_inverted_index.types. | 119 |
| abstract_inverted_index.Bladder | 2 |
| abstract_inverted_index.Further | 236 |
| abstract_inverted_index.Spatial | 120 |
| abstract_inverted_index.ability | 155 |
| abstract_inverted_index.bladder | 78 |
| abstract_inverted_index.capture | 157 |
| abstract_inverted_index.cohorts | 105, 240 |
| abstract_inverted_index.costly, | 25 |
| abstract_inverted_index.disease | 8 |
| abstract_inverted_index.diverse | 114 |
| abstract_inverted_index.enables | 202 |
| abstract_inverted_index.improve | 221 |
| abstract_inverted_index.mixed), | 182 |
| abstract_inverted_index.n=315), | 112 |
| abstract_inverted_index.overall | 190 |
| abstract_inverted_index.p=0.014 | 195 |
| abstract_inverted_index.patient | 222 |
| abstract_inverted_index.remains | 24 |
| abstract_inverted_index.routine | 44, 244 |
| abstract_inverted_index.scanner | 118 |
| abstract_inverted_index.spatial | 81, 128 |
| abstract_inverted_index.subtype | 145 |
| abstract_inverted_index.support | 228 |
| abstract_inverted_index.through | 21 |
| abstract_inverted_index.trained | 90 |
| abstract_inverted_index.treated | 55 |
| abstract_inverted_index.trials. | 235 |
| abstract_inverted_index.without | 216 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.DL-based | 200 |
| abstract_inverted_index.DL-model | 63 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Learning | 36 |
| abstract_inverted_index.accurate | 203 |
| abstract_inverted_index.achieved | 137 |
| abstract_inverted_index.approach | 38, 136 |
| abstract_inverted_index.clinical | 98, 225, 234, 245 |
| abstract_inverted_index.coherent | 168 |
| abstract_inverted_index.covering | 113 |
| abstract_inverted_index.distinct | 10 |
| abstract_inverted_index.enabling | 80 |
| abstract_inverted_index.evaluate | 49 |
| abstract_inverted_index.features | 179 |
| abstract_inverted_index.findings | 219 |
| abstract_inverted_index.inferred | 132 |
| abstract_inverted_index.patients | 54, 94, 125 |
| abstract_inverted_index.patterns | 169 |
| abstract_inverted_index.practice | 226 |
| abstract_inverted_index.resolved | 206 |
| abstract_inverted_index.revealed | 166 |
| abstract_inverted_index.staining | 115 |
| abstract_inverted_index.subtypes | 12, 42, 213 |
| abstract_inverted_index.survival | 191 |
| abstract_inverted_index.targeted | 233 |
| abstract_inverted_index.(log-rank | 194 |
| abstract_inverted_index.Predicted | 163 |
| abstract_inverted_index.confirmed | 126 |
| abstract_inverted_index.developed | 33, 61 |
| abstract_inverted_index.evaluated | 101 |
| abstract_inverted_index.framework | 201 |
| abstract_inverted_index.inference | 207 |
| abstract_inverted_index.molecular | 11, 19, 41, 82, 144, 172, 212 |
| abstract_inverted_index.predicted | 176 |
| abstract_inverted_index.profiles. | 134 |
| abstract_inverted_index.profiling | 20 |
| abstract_inverted_index.prognosis | 14 |
| abstract_inverted_index.protocols | 116 |
| abstract_inverted_index.resection | 76 |
| abstract_inverted_index.response. | 17 |
| abstract_inverted_index.spatially | 167, 205 |
| abstract_inverted_index.subtyping | 83 |
| abstract_inverted_index.(COBLAnCE, | 106 |
| abstract_inverted_index.associated | 184 |
| abstract_inverted_index.expression | 66, 133, 164, 210 |
| abstract_inverted_index.predicted, | 152 |
| abstract_inverted_index.predicting | 64 |
| abstract_inverted_index.prognostic | 51 |
| abstract_inverted_index.sequencing | 23 |
| abstract_inverted_index.validation | 237 |
| abstract_inverted_index.NAC-treated | 93 |
| abstract_inverted_index.complicated | 28 |
| abstract_inverted_index.consistency | 129 |
| abstract_inverted_index.independent | 104 |
| abstract_inverted_index.influencing | 13 |
| abstract_inverted_index.morphology. | 162 |
| abstract_inverted_index.neoadjuvant | 57 |
| abstract_inverted_index.prediction, | 146 |
| abstract_inverted_index.sequencing. | 217 |
| abstract_inverted_index.therapeutic | 16 |
| abstract_inverted_index.Importantly, | 174 |
| abstract_inverted_index.Saint-Louis, | 108 |
| abstract_inverted_index.chemotherapy | 58 |
| abstract_inverted_index.histological | 72, 161 |
| abstract_inverted_index.intratumoral | 30, 171 |
| abstract_inverted_index.demonstrating | 153 |
| abstract_inverted_index.heterogeneous | 7 |
| abstract_inverted_index.significantly | 151, 186 |
| abstract_inverted_index.transurethral | 75 |
| abstract_inverted_index.basal/squamous | 178 |
| abstract_inverted_index.dysregulations | 159 |
| abstract_inverted_index.heterogeneity. | 31, 173 |
| abstract_inverted_index.respectively). | 198 |
| abstract_inverted_index.stratification | 223 |
| abstract_inverted_index.time-consuming | 26 |
| abstract_inverted_index.transcriptomic | 158 |
| abstract_inverted_index.Muscle-Invasive | 1 |
| abstract_inverted_index.implementation. | 246 |
| abstract_inverted_index.transcriptomics | 121 |
| abstract_inverted_index.progression-free | 188 |
| abstract_inverted_index.histopathological | 45 |
| abstract_inverted_index.subtype-associated | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile.value | 0.72023462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |