Deep learning-enabled semantic segmentation for high-accuracy fluid inclusions quantification in high-purity quartz Article Swipe
Ting Fan
,
Zijie Ren
,
Qiankun Zhang
,
Zhi Liu
,
Hao Liu
,
Guocheng Lv
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mineng.2025.109569
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mineng.2025.109569
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.mineng.2025.109569
- OA Status
- hybrid
- Cited By
- 2
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411728899
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411728899Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.mineng.2025.109569Digital Object Identifier
- Title
-
Deep learning-enabled semantic segmentation for high-accuracy fluid inclusions quantification in high-purity quartzWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-27Full publication date if available
- Authors
-
Ting Fan, Zijie Ren, Qiankun Zhang, Zhi Liu, Hao Liu, Guocheng LvList of authors in order
- Landing page
-
https://doi.org/10.1016/j.mineng.2025.109569Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.mineng.2025.109569Direct OA link when available
- Concepts
-
Quartz, Segmentation, Fluid inclusions, Deep learning, Artificial intelligence, Computer science, Geology, Mineralogy, Materials science, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411728899 |
|---|---|
| doi | https://doi.org/10.1016/j.mineng.2025.109569 |
| ids.doi | https://doi.org/10.1016/j.mineng.2025.109569 |
| ids.openalex | https://openalex.org/W4411728899 |
| fwci | 5.52259304 |
| type | article |
| title | Deep learning-enabled semantic segmentation for high-accuracy fluid inclusions quantification in high-purity quartz |
| awards[0].id | https://openalex.org/G1355567581 |
| awards[0].funder_id | https://openalex.org/F4320329860 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2024ZD0605400 |
| awards[0].funder_display_name | National Science and Technology Major Project |
| biblio.issue | |
| biblio.volume | 232 |
| biblio.last_page | 109569 |
| biblio.first_page | 109569 |
| topics[0].id | https://openalex.org/T10399 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Hydrocarbon exploration and reservoir analysis |
| topics[1].id | https://openalex.org/T12282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Mineral Processing and Grinding |
| topics[2].id | https://openalex.org/T11284 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9854000210762024 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Coal Properties and Utilization |
| funders[0].id | https://openalex.org/F4320329860 |
| funders[0].ror | |
| funders[0].display_name | National Science and Technology Major Project |
| is_xpac | False |
| apc_list.value | 4080 |
| apc_list.currency | USD |
| apc_list.value_usd | 4080 |
| apc_paid.value | 4080 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4080 |
| concepts[0].id | https://openalex.org/C2779870107 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6826615333557129 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q43010 |
| concepts[0].display_name | Quartz |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6440257430076599 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C2776152364 |
| concepts[2].level | 3 |
| concepts[2].score | 0.626907229423523 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1822828 |
| concepts[2].display_name | Fluid inclusions |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.537812352180481 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5361473560333252 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3979482650756836 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3670843839645386 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C199289684 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3567737936973572 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q83353 |
| concepts[7].display_name | Mineralogy |
| concepts[8].id | https://openalex.org/C192562407 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3097625970840454 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[8].display_name | Materials science |
| concepts[9].id | https://openalex.org/C191897082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1781221330165863 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[9].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/quartz |
| keywords[0].score | 0.6826615333557129 |
| keywords[0].display_name | Quartz |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6440257430076599 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/fluid-inclusions |
| keywords[2].score | 0.626907229423523 |
| keywords[2].display_name | Fluid inclusions |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.537812352180481 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5361473560333252 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3979482650756836 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3670843839645386 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/mineralogy |
| keywords[7].score | 0.3567737936973572 |
| keywords[7].display_name | Mineralogy |
| keywords[8].id | https://openalex.org/keywords/materials-science |
| keywords[8].score | 0.3097625970840454 |
| keywords[8].display_name | Materials science |
| keywords[9].id | https://openalex.org/keywords/metallurgy |
| keywords[9].score | 0.1781221330165863 |
| keywords[9].display_name | Metallurgy |
| language | en |
| locations[0].id | doi:10.1016/j.mineng.2025.109569 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181849944 |
| locations[0].source.issn | 0892-6875, 1872-9444 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0892-6875 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Minerals Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Minerals Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.mineng.2025.109569 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066096959 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4021-149X |
| authorships[0].author.display_name | Ting Fan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ting Fan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052824242 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1425-0986 |
| authorships[1].author.display_name | Zijie Ren |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zijie Ren |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015437475 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qiankun Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiankun Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100382336 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1625-1421 |
| authorships[3].author.display_name | Zhi Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhi Liu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5072860354 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-2009-2760 |
| authorships[4].author.display_name | Hao Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hao Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5085005060 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3719-8431 |
| authorships[5].author.display_name | Guocheng Lv |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Guocheng Lv |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.mineng.2025.109569 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning-enabled semantic segmentation for high-accuracy fluid inclusions quantification in high-purity quartz |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10399 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Hydrocarbon exploration and reservoir analysis |
| related_works | https://openalex.org/W2955772735, https://openalex.org/W2384647367, https://openalex.org/W1987527418, https://openalex.org/W1977605491, https://openalex.org/W2059721600, https://openalex.org/W2359634812, https://openalex.org/W2389889366, https://openalex.org/W2389550579, https://openalex.org/W2018645837, https://openalex.org/W2105279468 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.mineng.2025.109569 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181849944 |
| best_oa_location.source.issn | 0892-6875, 1872-9444 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0892-6875 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Minerals Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Minerals Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.mineng.2025.109569 |
| primary_location.id | doi:10.1016/j.mineng.2025.109569 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181849944 |
| primary_location.source.issn | 0892-6875, 1872-9444 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0892-6875 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Minerals Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Minerals Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.mineng.2025.109569 |
| publication_date | 2025-06-27 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2412782625, https://openalex.org/W2630837129, https://openalex.org/W2964309882, https://openalex.org/W6962167727, https://openalex.org/W4394564441, https://openalex.org/W3168244790, https://openalex.org/W4408952348, https://openalex.org/W2194775991, https://openalex.org/W4297775537, https://openalex.org/W6856782719, https://openalex.org/W2767555253, https://openalex.org/W3010144798, https://openalex.org/W4399155464, https://openalex.org/W77200240, https://openalex.org/W25811251, https://openalex.org/W6790582835, https://openalex.org/W4309722927, https://openalex.org/W4225409047, https://openalex.org/W2059979299, https://openalex.org/W1901129140, https://openalex.org/W3156930162, https://openalex.org/W3018197280, https://openalex.org/W1549358575, https://openalex.org/W2374503701, https://openalex.org/W2916798096, https://openalex.org/W3171398643, https://openalex.org/W4393408109, https://openalex.org/W4389191205, https://openalex.org/W2560023338, https://openalex.org/W2352333137, https://openalex.org/W2996290406, https://openalex.org/W4386902798, https://openalex.org/W3130521908 |
| referenced_works_count | 33 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.90822571 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |