Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecoinf.2024.102886
This study introduces a novel crop modeling approach based on cutting-edge computational tools to advance crop production monitoring methodologies, and, thereby, tackle global food security issues. Our approach pioneers integrating deep learning and remote sensing with process-based crop models to enhance rice yield predictions while leveraging the strengths and weaknesses of each model. We developed and evaluated four models based on distinct deep neural network architectures: feed-forward neural network, long short-term memory (LSTM), gated recurrent units, and bidirectional LSTM. All the models demonstrated high predictive accuracies, with percent biases of 0.74–2.62 and Nash–Sutcliffe model efficiencies of 0.954–0.996; however, the LSTM performed best among the four models. Notably, the models' performances varied when applied to regional datasets that were not included in the training phase; this highlighted the critical need for diverse training data to enhance model robustness. This research marks a significant advancement in agricultural modeling by combining state-of-the-art computational techniques with established methodologies, setting a new standard for crop yield prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecoinf.2024.102886
- OA Status
- gold
- Cited By
- 22
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404201893
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404201893Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecoinf.2024.102886Digital Object Identifier
- Title
-
Deep learning-enhanced remote sensing-integrated crop modeling for rice yield predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-09Full publication date if available
- Authors
-
Seungtaek Jeong, Jonghan Ko, Jong-Oh Ban, Taehwan Shin, Jong‐Min YeomList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecoinf.2024.102886Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecoinf.2024.102886Direct OA link when available
- Concepts
-
Yield (engineering), Crop, Crop yield, Deep learning, Computer science, Agricultural engineering, Artificial intelligence, Agronomy, Machine learning, Biology, Engineering, Materials science, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 20, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404201893 |
|---|---|
| doi | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| ids.doi | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| ids.openalex | https://openalex.org/W4404201893 |
| fwci | 19.35044531 |
| type | article |
| title | Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction |
| awards[0].id | https://openalex.org/G4299427030 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | NRF-2021R1A2C2004459 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| biblio.issue | |
| biblio.volume | 84 |
| biblio.last_page | 102886 |
| biblio.first_page | 102886 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9890999794006348 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T12093 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9675999879837036 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Greenhouse Technology and Climate Control |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 2510 |
| apc_list.currency | USD |
| apc_list.value_usd | 2510 |
| apc_paid.value | 2510 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2510 |
| concepts[0].id | https://openalex.org/C134121241 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6608543395996094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[0].display_name | Yield (engineering) |
| concepts[1].id | https://openalex.org/C137580998 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5381814241409302 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[1].display_name | Crop |
| concepts[2].id | https://openalex.org/C126343540 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4946541488170624 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q889514 |
| concepts[2].display_name | Crop yield |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45968151092529297 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4446243643760681 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C88463610 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4227515459060669 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[5].display_name | Agricultural engineering |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4210914373397827 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C6557445 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41063442826271057 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[7].display_name | Agronomy |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36361247301101685 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16340696811676025 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11794742941856384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0770711600780487 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C191897082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[12].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/yield |
| keywords[0].score | 0.6608543395996094 |
| keywords[0].display_name | Yield (engineering) |
| keywords[1].id | https://openalex.org/keywords/crop |
| keywords[1].score | 0.5381814241409302 |
| keywords[1].display_name | Crop |
| keywords[2].id | https://openalex.org/keywords/crop-yield |
| keywords[2].score | 0.4946541488170624 |
| keywords[2].display_name | Crop yield |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.45968151092529297 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4446243643760681 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[5].score | 0.4227515459060669 |
| keywords[5].display_name | Agricultural engineering |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4210914373397827 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/agronomy |
| keywords[7].score | 0.41063442826271057 |
| keywords[7].display_name | Agronomy |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.36361247301101685 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.16340696811676025 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.11794742941856384 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/materials-science |
| keywords[11].score | 0.0770711600780487 |
| keywords[11].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1016/j.ecoinf.2024.102886 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195809937 |
| locations[0].source.issn | 1574-9541, 1878-0512 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1574-9541 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Informatics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| locations[1].id | pmh:oai:doaj.org/article:7917c9ac78474e20b9f8e7e63a35c006 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Informatics, Vol 84, Iss , Pp 102886- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/7917c9ac78474e20b9f8e7e63a35c006 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5009791117 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2989-1364 |
| authorships[0].author.display_name | Seungtaek Jeong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seungtaek Jeong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5048484343 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7974-3808 |
| authorships[1].author.display_name | Jonghan Ko |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonghan Ko |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088290954 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jong-Oh Ban |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jong-oh Ban |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5057561870 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1401-8837 |
| authorships[3].author.display_name | Taehwan Shin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Taehwan Shin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5038857310 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2321-731X |
| authorships[4].author.display_name | Jong‐Min Yeom |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jong-min Yeom |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2018149064, https://openalex.org/W2985080412, https://openalex.org/W3006201793, https://openalex.org/W4378566980, https://openalex.org/W139018289, https://openalex.org/W2065828020, https://openalex.org/W2002738406, https://openalex.org/W2380001790, https://openalex.org/W2515171211, https://openalex.org/W1979405749 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 20 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecoinf.2024.102886 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195809937 |
| best_oa_location.source.issn | 1574-9541, 1878-0512 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1574-9541 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| primary_location.id | doi:10.1016/j.ecoinf.2024.102886 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195809937 |
| primary_location.source.issn | 1574-9541, 1878-0512 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1574-9541 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Informatics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2024.102886 |
| publication_date | 2024-11-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3164419424, https://openalex.org/W4224955530, https://openalex.org/W6854667571, https://openalex.org/W3199475877, https://openalex.org/W2074865628, https://openalex.org/W3083643364, https://openalex.org/W2972087877, https://openalex.org/W4381433429, https://openalex.org/W4391963800, https://openalex.org/W4385272276, https://openalex.org/W3157486647, https://openalex.org/W6842583296, https://openalex.org/W2888842680, https://openalex.org/W2794545029, https://openalex.org/W4281767441, https://openalex.org/W3196038450, https://openalex.org/W4364379307, https://openalex.org/W2790979755, https://openalex.org/W2033585087, https://openalex.org/W4386709719, https://openalex.org/W6859370621, https://openalex.org/W3082058908, https://openalex.org/W3028726941, https://openalex.org/W6866467450, https://openalex.org/W612661449, https://openalex.org/W2972666701, https://openalex.org/W3193999147, https://openalex.org/W4207038069, https://openalex.org/W6790139290, https://openalex.org/W4389223417, https://openalex.org/W2808513662, https://openalex.org/W3132981178, https://openalex.org/W6852623622, https://openalex.org/W2069882289, https://openalex.org/W3000098473, https://openalex.org/W4387197185, https://openalex.org/W2979666105, https://openalex.org/W4394733243, https://openalex.org/W2133941557, https://openalex.org/W4399973013, https://openalex.org/W2898444227, https://openalex.org/W2023772135, https://openalex.org/W2022298331, https://openalex.org/W6804932138, https://openalex.org/W4294676055, https://openalex.org/W4377696091, https://openalex.org/W4200306160, https://openalex.org/W602008857, https://openalex.org/W4384701390, https://openalex.org/W4389493987, https://openalex.org/W4396560078, https://openalex.org/W3183898570 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 3, 140, 155 |
| abstract_inverted_index.We | 53 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 120, 143 |
| abstract_inverted_index.of | 50, 89, 95 |
| abstract_inverted_index.on | 9, 60 |
| abstract_inverted_index.to | 13, 39, 113, 133 |
| abstract_inverted_index.All | 79 |
| abstract_inverted_index.Our | 26 |
| abstract_inverted_index.and | 32, 48, 55, 76, 91 |
| abstract_inverted_index.for | 129, 158 |
| abstract_inverted_index.new | 156 |
| abstract_inverted_index.not | 118 |
| abstract_inverted_index.the | 46, 80, 98, 103, 107, 121, 126 |
| abstract_inverted_index.LSTM | 99 |
| abstract_inverted_index.This | 0, 137 |
| abstract_inverted_index.and, | 19 |
| abstract_inverted_index.best | 101 |
| abstract_inverted_index.crop | 5, 15, 37, 159 |
| abstract_inverted_index.data | 132 |
| abstract_inverted_index.deep | 30, 62 |
| abstract_inverted_index.each | 51 |
| abstract_inverted_index.food | 23 |
| abstract_inverted_index.four | 57, 104 |
| abstract_inverted_index.high | 83 |
| abstract_inverted_index.long | 69 |
| abstract_inverted_index.need | 128 |
| abstract_inverted_index.rice | 41 |
| abstract_inverted_index.that | 116 |
| abstract_inverted_index.this | 124 |
| abstract_inverted_index.were | 117 |
| abstract_inverted_index.when | 111 |
| abstract_inverted_index.with | 35, 86, 151 |
| abstract_inverted_index.LSTM. | 78 |
| abstract_inverted_index.among | 102 |
| abstract_inverted_index.based | 8, 59 |
| abstract_inverted_index.gated | 73 |
| abstract_inverted_index.marks | 139 |
| abstract_inverted_index.model | 93, 135 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.tools | 12 |
| abstract_inverted_index.while | 44 |
| abstract_inverted_index.yield | 42, 160 |
| abstract_inverted_index.biases | 88 |
| abstract_inverted_index.global | 22 |
| abstract_inverted_index.memory | 71 |
| abstract_inverted_index.model. | 52 |
| abstract_inverted_index.models | 38, 58, 81 |
| abstract_inverted_index.neural | 63, 67 |
| abstract_inverted_index.phase; | 123 |
| abstract_inverted_index.remote | 33 |
| abstract_inverted_index.tackle | 21 |
| abstract_inverted_index.units, | 75 |
| abstract_inverted_index.varied | 110 |
| abstract_inverted_index.(LSTM), | 72 |
| abstract_inverted_index.advance | 14 |
| abstract_inverted_index.applied | 112 |
| abstract_inverted_index.diverse | 130 |
| abstract_inverted_index.enhance | 40, 134 |
| abstract_inverted_index.issues. | 25 |
| abstract_inverted_index.models' | 108 |
| abstract_inverted_index.models. | 105 |
| abstract_inverted_index.network | 64 |
| abstract_inverted_index.percent | 87 |
| abstract_inverted_index.sensing | 34 |
| abstract_inverted_index.setting | 154 |
| abstract_inverted_index.Notably, | 106 |
| abstract_inverted_index.approach | 7, 27 |
| abstract_inverted_index.critical | 127 |
| abstract_inverted_index.datasets | 115 |
| abstract_inverted_index.distinct | 61 |
| abstract_inverted_index.however, | 97 |
| abstract_inverted_index.included | 119 |
| abstract_inverted_index.learning | 31 |
| abstract_inverted_index.modeling | 6, 145 |
| abstract_inverted_index.network, | 68 |
| abstract_inverted_index.pioneers | 28 |
| abstract_inverted_index.regional | 114 |
| abstract_inverted_index.research | 138 |
| abstract_inverted_index.security | 24 |
| abstract_inverted_index.standard | 157 |
| abstract_inverted_index.thereby, | 20 |
| abstract_inverted_index.training | 122, 131 |
| abstract_inverted_index.combining | 147 |
| abstract_inverted_index.developed | 54 |
| abstract_inverted_index.evaluated | 56 |
| abstract_inverted_index.performed | 100 |
| abstract_inverted_index.recurrent | 74 |
| abstract_inverted_index.strengths | 47 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.leveraging | 45 |
| abstract_inverted_index.monitoring | 17 |
| abstract_inverted_index.predictive | 84 |
| abstract_inverted_index.production | 16 |
| abstract_inverted_index.short-term | 70 |
| abstract_inverted_index.techniques | 150 |
| abstract_inverted_index.weaknesses | 49 |
| abstract_inverted_index.0.74–2.62 | 90 |
| abstract_inverted_index.accuracies, | 85 |
| abstract_inverted_index.advancement | 142 |
| abstract_inverted_index.established | 152 |
| abstract_inverted_index.highlighted | 125 |
| abstract_inverted_index.integrating | 29 |
| abstract_inverted_index.prediction. | 161 |
| abstract_inverted_index.predictions | 43 |
| abstract_inverted_index.robustness. | 136 |
| abstract_inverted_index.significant | 141 |
| abstract_inverted_index.agricultural | 144 |
| abstract_inverted_index.cutting-edge | 10 |
| abstract_inverted_index.demonstrated | 82 |
| abstract_inverted_index.efficiencies | 94 |
| abstract_inverted_index.feed-forward | 66 |
| abstract_inverted_index.performances | 109 |
| abstract_inverted_index.bidirectional | 77 |
| abstract_inverted_index.computational | 11, 149 |
| abstract_inverted_index.process-based | 36 |
| abstract_inverted_index.0.954–0.996; | 96 |
| abstract_inverted_index.architectures: | 65 |
| abstract_inverted_index.methodologies, | 18, 153 |
| abstract_inverted_index.Nash–Sutcliffe | 92 |
| abstract_inverted_index.state-of-the-art | 148 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99112967 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |