Deep Learning for Data-Driven Districting-and-Routing Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.06040
Districting-and-routing is a strategic problem aiming to aggregate basic geographical units (e.g., zip codes) into delivery districts. Its goal is to minimize the expected long-term routing cost of performing deliveries in each district separately. Solving this stochastic problem poses critical challenges since repeatedly evaluating routing costs on a set of scenarios while searching for optimal districts takes considerable time. Consequently, solution approaches usually replace the true cost estimation with continuous cost approximation formulas extending Beardwood-Halton-Hammersley and Daganzo's work. These formulas commit errors that can be magnified during the optimization step. To reconcile speed and solution quality, we introduce a supervised learning and optimization methodology leveraging a graph neural network for delivery-cost estimation. This network is trained to imitate known costs generated on a limited subset of training districts. It is used within an iterated local search procedure to produce high-quality districting plans. Our computational experiments, conducted on five metropolitan areas in the United Kingdom, demonstrate that the graph neural network predicts long-term district cost operations more accurately, and that optimizing over this oracle permits large economic gains (10.12% on average) over baseline methods that use continuous approximation formulas or shallow neural networks. Finally, we observe that having compact districts alone does not guarantee high-quality solutions and that other learnable geometrical features of the districts play an essential role.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.06040
- https://arxiv.org/pdf/2402.06040
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391766394
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391766394Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.06040Digital Object Identifier
- Title
-
Deep Learning for Data-Driven Districting-and-RoutingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-08Full publication date if available
- Authors
-
ARTHUR MONTEIRO FERRAZ, Quentin Cappart, Thibaut VidalList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.06040Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.06040Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.06040Direct OA link when available
- Concepts
-
Computer science, Routing (electronic design automation), Artificial intelligence, Machine learning, Data science, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391766394 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.06040 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.06040 |
| ids.openalex | https://openalex.org/W4391766394 |
| fwci | |
| type | preprint |
| title | Deep Learning for Data-Driven Districting-and-Routing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11598 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9718000292778015 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Internet Traffic Analysis and Secure E-voting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5773838758468628 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C74172769 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5349932909011841 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[1].display_name | Routing (electronic design automation) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44777345657348633 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36806604266166687 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3372837007045746 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.25398388504981995 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5773838758468628 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/routing |
| keywords[1].score | 0.5349932909011841 |
| keywords[1].display_name | Routing (electronic design automation) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.44777345657348633 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.36806604266166687 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3372837007045746 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.25398388504981995 |
| keywords[5].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.06040 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.06040 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.06040 |
| locations[1].id | doi:10.48550/arxiv.2402.06040 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.06040 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5027305288 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | ARTHUR MONTEIRO FERRAZ |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ferraz, Arthur |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065781444 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8742-0774 |
| authorships[1].author.display_name | Quentin Cappart |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cappart, Quentin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5009386864 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5183-8485 |
| authorships[2].author.display_name | Thibaut Vidal |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Vidal, Thibaut |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.06040 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning for Data-Driven Districting-and-Routing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11598 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9718000292778015 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Internet Traffic Analysis and Secure E-voting |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.06040 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.06040 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.06040 |
| primary_location.id | pmh:oai:arXiv.org:2402.06040 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.06040 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.06040 |
| publication_date | 2024-02-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 47, 98, 105, 122 |
| abstract_inverted_index.It | 128 |
| abstract_inverted_index.To | 90 |
| abstract_inverted_index.an | 132, 215 |
| abstract_inverted_index.be | 84 |
| abstract_inverted_index.in | 30, 150 |
| abstract_inverted_index.is | 1, 19, 114, 129 |
| abstract_inverted_index.of | 27, 49, 125, 211 |
| abstract_inverted_index.on | 46, 121, 146, 178 |
| abstract_inverted_index.or | 188 |
| abstract_inverted_index.to | 6, 20, 116, 137 |
| abstract_inverted_index.we | 96, 193 |
| abstract_inverted_index.Its | 17 |
| abstract_inverted_index.Our | 142 |
| abstract_inverted_index.and | 75, 93, 101, 167, 205 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.for | 53, 109 |
| abstract_inverted_index.not | 201 |
| abstract_inverted_index.set | 48 |
| abstract_inverted_index.the | 22, 64, 87, 151, 156, 212 |
| abstract_inverted_index.use | 184 |
| abstract_inverted_index.zip | 12 |
| abstract_inverted_index.This | 112 |
| abstract_inverted_index.cost | 26, 66, 70, 163 |
| abstract_inverted_index.does | 200 |
| abstract_inverted_index.each | 31 |
| abstract_inverted_index.five | 147 |
| abstract_inverted_index.goal | 18 |
| abstract_inverted_index.into | 14 |
| abstract_inverted_index.more | 165 |
| abstract_inverted_index.over | 170, 180 |
| abstract_inverted_index.play | 214 |
| abstract_inverted_index.that | 82, 155, 168, 183, 195, 206 |
| abstract_inverted_index.this | 35, 171 |
| abstract_inverted_index.true | 65 |
| abstract_inverted_index.used | 130 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.These | 78 |
| abstract_inverted_index.alone | 199 |
| abstract_inverted_index.areas | 149 |
| abstract_inverted_index.basic | 8 |
| abstract_inverted_index.costs | 45, 119 |
| abstract_inverted_index.gains | 176 |
| abstract_inverted_index.graph | 106, 157 |
| abstract_inverted_index.known | 118 |
| abstract_inverted_index.large | 174 |
| abstract_inverted_index.local | 134 |
| abstract_inverted_index.other | 207 |
| abstract_inverted_index.poses | 38 |
| abstract_inverted_index.role. | 217 |
| abstract_inverted_index.since | 41 |
| abstract_inverted_index.speed | 92 |
| abstract_inverted_index.step. | 89 |
| abstract_inverted_index.takes | 56 |
| abstract_inverted_index.time. | 58 |
| abstract_inverted_index.units | 10 |
| abstract_inverted_index.while | 51 |
| abstract_inverted_index.work. | 77 |
| abstract_inverted_index.(e.g., | 11 |
| abstract_inverted_index.United | 152 |
| abstract_inverted_index.aiming | 5 |
| abstract_inverted_index.codes) | 13 |
| abstract_inverted_index.commit | 80 |
| abstract_inverted_index.during | 86 |
| abstract_inverted_index.errors | 81 |
| abstract_inverted_index.having | 196 |
| abstract_inverted_index.neural | 107, 158, 190 |
| abstract_inverted_index.oracle | 172 |
| abstract_inverted_index.plans. | 141 |
| abstract_inverted_index.search | 135 |
| abstract_inverted_index.subset | 124 |
| abstract_inverted_index.within | 131 |
| abstract_inverted_index.(10.12% | 177 |
| abstract_inverted_index.Solving | 34 |
| abstract_inverted_index.compact | 197 |
| abstract_inverted_index.imitate | 117 |
| abstract_inverted_index.limited | 123 |
| abstract_inverted_index.methods | 182 |
| abstract_inverted_index.network | 108, 113, 159 |
| abstract_inverted_index.observe | 194 |
| abstract_inverted_index.optimal | 54 |
| abstract_inverted_index.permits | 173 |
| abstract_inverted_index.problem | 4, 37 |
| abstract_inverted_index.produce | 138 |
| abstract_inverted_index.replace | 63 |
| abstract_inverted_index.routing | 25, 44 |
| abstract_inverted_index.shallow | 189 |
| abstract_inverted_index.trained | 115 |
| abstract_inverted_index.usually | 62 |
| abstract_inverted_index.Finally, | 192 |
| abstract_inverted_index.Kingdom, | 153 |
| abstract_inverted_index.average) | 179 |
| abstract_inverted_index.baseline | 181 |
| abstract_inverted_index.critical | 39 |
| abstract_inverted_index.delivery | 15 |
| abstract_inverted_index.district | 32, 162 |
| abstract_inverted_index.economic | 175 |
| abstract_inverted_index.expected | 23 |
| abstract_inverted_index.features | 210 |
| abstract_inverted_index.formulas | 72, 79, 187 |
| abstract_inverted_index.iterated | 133 |
| abstract_inverted_index.learning | 100 |
| abstract_inverted_index.minimize | 21 |
| abstract_inverted_index.predicts | 160 |
| abstract_inverted_index.quality, | 95 |
| abstract_inverted_index.solution | 60, 94 |
| abstract_inverted_index.training | 126 |
| abstract_inverted_index.Daganzo's | 76 |
| abstract_inverted_index.aggregate | 7 |
| abstract_inverted_index.conducted | 145 |
| abstract_inverted_index.districts | 55, 198, 213 |
| abstract_inverted_index.essential | 216 |
| abstract_inverted_index.extending | 73 |
| abstract_inverted_index.generated | 120 |
| abstract_inverted_index.guarantee | 202 |
| abstract_inverted_index.introduce | 97 |
| abstract_inverted_index.learnable | 208 |
| abstract_inverted_index.long-term | 24, 161 |
| abstract_inverted_index.magnified | 85 |
| abstract_inverted_index.networks. | 191 |
| abstract_inverted_index.procedure | 136 |
| abstract_inverted_index.reconcile | 91 |
| abstract_inverted_index.scenarios | 50 |
| abstract_inverted_index.searching | 52 |
| abstract_inverted_index.solutions | 204 |
| abstract_inverted_index.strategic | 3 |
| abstract_inverted_index.approaches | 61 |
| abstract_inverted_index.challenges | 40 |
| abstract_inverted_index.continuous | 69, 185 |
| abstract_inverted_index.deliveries | 29 |
| abstract_inverted_index.districts. | 16, 127 |
| abstract_inverted_index.estimation | 67 |
| abstract_inverted_index.evaluating | 43 |
| abstract_inverted_index.leveraging | 104 |
| abstract_inverted_index.operations | 164 |
| abstract_inverted_index.optimizing | 169 |
| abstract_inverted_index.performing | 28 |
| abstract_inverted_index.repeatedly | 42 |
| abstract_inverted_index.stochastic | 36 |
| abstract_inverted_index.supervised | 99 |
| abstract_inverted_index.accurately, | 166 |
| abstract_inverted_index.demonstrate | 154 |
| abstract_inverted_index.districting | 140 |
| abstract_inverted_index.estimation. | 111 |
| abstract_inverted_index.geometrical | 209 |
| abstract_inverted_index.methodology | 103 |
| abstract_inverted_index.separately. | 33 |
| abstract_inverted_index.considerable | 57 |
| abstract_inverted_index.experiments, | 144 |
| abstract_inverted_index.geographical | 9 |
| abstract_inverted_index.high-quality | 139, 203 |
| abstract_inverted_index.metropolitan | 148 |
| abstract_inverted_index.optimization | 88, 102 |
| abstract_inverted_index.Consequently, | 59 |
| abstract_inverted_index.approximation | 71, 186 |
| abstract_inverted_index.computational | 143 |
| abstract_inverted_index.delivery-cost | 110 |
| abstract_inverted_index.Districting-and-routing | 0 |
| abstract_inverted_index.Beardwood-Halton-Hammersley | 74 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |