Deep learning-guided discovery of selective JAK2-JH2 allosteric inhibitors: integration of MLP predictive modeling, BREED-based library design, and computational validation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fchem.2025.1646784
The JAK2 pseudokinase domain (JH2) is an important therapeutic target in hematologic and oncologic diseases, motivating the search for selective allosteric inhibitors. In this study, a multilayer perceptron (MLP) deep learning model was trained on 1,200 JAK2-targeting compounds and validated internally and externally, while a BREED-based fragment hybridization strategy generated 6,210 new molecules that were screened using MLP scoring, pharmacokinetic filters, and molecular docking. Three compounds–BRD1, BRD2, and BRD3–emerged as promising inhibitors, with BRD1 showing the strongest binding affinity, highest conformational stability, and best selectivity for key JH2 residues, surpassing the reference ligand 36H; MD and ADMET analyses further supported its stability and favorable safety profile. Overall, BRD1 is identified as a strong computational candidate for selective allosteric inhibition of JAK2-JH2, warranting future experimental validation, and all models and code are openly available.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fchem.2025.1646784
- https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdf
- OA Status
- gold
- References
- 47
- OpenAlex ID
- https://openalex.org/W4416841177
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416841177Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fchem.2025.1646784Digital Object Identifier
- Title
-
Deep learning-guided discovery of selective JAK2-JH2 allosteric inhibitors: integration of MLP predictive modeling, BREED-based library design, and computational validationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-01Full publication date if available
- Authors
-
Mebarka Ouassaf, Kannan R. R. Rengasamy, Bader Y. AlhatlaniList of authors in order
- Landing page
-
https://doi.org/10.3389/fchem.2025.1646784Publisher landing page
- PDF URL
-
https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416841177 |
|---|---|
| doi | https://doi.org/10.3389/fchem.2025.1646784 |
| ids.doi | https://doi.org/10.3389/fchem.2025.1646784 |
| ids.openalex | https://openalex.org/W4416841177 |
| fwci | |
| type | article |
| title | Deep learning-guided discovery of selective JAK2-JH2 allosteric inhibitors: integration of MLP predictive modeling, BREED-based library design, and computational validation |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| language | en |
| locations[0].id | doi:10.3389/fchem.2025.1646784 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764970645 |
| locations[0].source.issn | 2296-2646 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-2646 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Chemistry |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Chemistry |
| locations[0].landing_page_url | https://doi.org/10.3389/fchem.2025.1646784 |
| locations[1].id | pmh:oai:doaj.org/article:a43cb5bf98c34d38bd83c0eb2197c8b1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Chemistry, Vol 13 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/a43cb5bf98c34d38bd83c0eb2197c8b1 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5031215035 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0292-0949 |
| authorships[0].author.display_name | Mebarka Ouassaf |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mebarka Ouassaf |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012546916 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7205-7389 |
| authorships[1].author.display_name | Kannan R. R. Rengasamy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kannan R. R. Rengasamy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5004673141 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0871-6313 |
| authorships[2].author.display_name | Bader Y. Alhatlani |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bader Y. Alhatlani |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-01T00:00:00 |
| display_name | Deep learning-guided discovery of selective JAK2-JH2 allosteric inhibitors: integration of MLP predictive modeling, BREED-based library design, and computational validation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T00:04:00.142953 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fchem.2025.1646784 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764970645 |
| best_oa_location.source.issn | 2296-2646 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-2646 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Chemistry |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Chemistry |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fchem.2025.1646784 |
| primary_location.id | doi:10.3389/fchem.2025.1646784 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764970645 |
| primary_location.source.issn | 2296-2646 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-2646 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Chemistry |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2025.1646784/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Chemistry |
| primary_location.landing_page_url | https://doi.org/10.3389/fchem.2025.1646784 |
| publication_date | 2025-12-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4309490745, https://openalex.org/W2164370980, https://openalex.org/W2120408260, https://openalex.org/W2801088198, https://openalex.org/W2034549041, https://openalex.org/W2005605035, https://openalex.org/W4387672155, https://openalex.org/W4211073165, https://openalex.org/W2160592148, https://openalex.org/W2772061302, https://openalex.org/W2802557767, https://openalex.org/W4307188191, https://openalex.org/W3216146155, https://openalex.org/W4220753302, https://openalex.org/W2176516200, https://openalex.org/W2049145190, https://openalex.org/W2964121744, https://openalex.org/W2116698685, https://openalex.org/W2031168104, https://openalex.org/W2189911347, https://openalex.org/W1985272737, https://openalex.org/W2231320375, https://openalex.org/W4321004438, https://openalex.org/W4384526017, https://openalex.org/W4408919244, https://openalex.org/W2050458179, https://openalex.org/W2009867031, https://openalex.org/W4285084790, https://openalex.org/W3001059052, https://openalex.org/W3047952087, https://openalex.org/W1988037271, https://openalex.org/W4367049415, https://openalex.org/W2138165161, https://openalex.org/W1966716734, https://openalex.org/W2087701900, https://openalex.org/W4388099073, https://openalex.org/W4403402994, https://openalex.org/W2041881307, https://openalex.org/W2032044839, https://openalex.org/W2029160308, https://openalex.org/W4366597855, https://openalex.org/W1966969980, https://openalex.org/W4391617198, https://openalex.org/W4403424785, https://openalex.org/W4393204750, https://openalex.org/W4388455891, https://openalex.org/W4280628150 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 25, 44, 111 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.MD | 94 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.as | 69, 110 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 5, 108 |
| abstract_inverted_index.of | 119 |
| abstract_inverted_index.on | 34 |
| abstract_inverted_index.JH2 | 87 |
| abstract_inverted_index.MLP | 57 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 126 |
| abstract_inverted_index.and | 12, 38, 41, 61, 67, 82, 95, 102, 125, 128 |
| abstract_inverted_index.are | 130 |
| abstract_inverted_index.for | 18, 85, 115 |
| abstract_inverted_index.its | 100 |
| abstract_inverted_index.key | 86 |
| abstract_inverted_index.new | 51 |
| abstract_inverted_index.the | 16, 75, 90 |
| abstract_inverted_index.was | 32 |
| abstract_inverted_index.36H; | 93 |
| abstract_inverted_index.BRD1 | 73, 107 |
| abstract_inverted_index.JAK2 | 1 |
| abstract_inverted_index.best | 83 |
| abstract_inverted_index.code | 129 |
| abstract_inverted_index.deep | 29 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.were | 54 |
| abstract_inverted_index.with | 72 |
| abstract_inverted_index.(JH2) | 4 |
| abstract_inverted_index.(MLP) | 28 |
| abstract_inverted_index.1,200 | 35 |
| abstract_inverted_index.6,210 | 50 |
| abstract_inverted_index.ADMET | 96 |
| abstract_inverted_index.BRD2, | 66 |
| abstract_inverted_index.Three | 64 |
| abstract_inverted_index.model | 31 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.while | 43 |
| abstract_inverted_index.domain | 3 |
| abstract_inverted_index.future | 122 |
| abstract_inverted_index.ligand | 92 |
| abstract_inverted_index.models | 127 |
| abstract_inverted_index.openly | 131 |
| abstract_inverted_index.safety | 104 |
| abstract_inverted_index.search | 17 |
| abstract_inverted_index.strong | 112 |
| abstract_inverted_index.study, | 24 |
| abstract_inverted_index.target | 9 |
| abstract_inverted_index.binding | 77 |
| abstract_inverted_index.further | 98 |
| abstract_inverted_index.highest | 79 |
| abstract_inverted_index.showing | 74 |
| abstract_inverted_index.trained | 33 |
| abstract_inverted_index.Overall, | 106 |
| abstract_inverted_index.analyses | 97 |
| abstract_inverted_index.docking. | 63 |
| abstract_inverted_index.filters, | 60 |
| abstract_inverted_index.fragment | 46 |
| abstract_inverted_index.learning | 30 |
| abstract_inverted_index.profile. | 105 |
| abstract_inverted_index.scoring, | 58 |
| abstract_inverted_index.screened | 55 |
| abstract_inverted_index.strategy | 48 |
| abstract_inverted_index.JAK2-JH2, | 120 |
| abstract_inverted_index.affinity, | 78 |
| abstract_inverted_index.candidate | 114 |
| abstract_inverted_index.compounds | 37 |
| abstract_inverted_index.diseases, | 14 |
| abstract_inverted_index.favorable | 103 |
| abstract_inverted_index.generated | 49 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.molecular | 62 |
| abstract_inverted_index.molecules | 52 |
| abstract_inverted_index.oncologic | 13 |
| abstract_inverted_index.promising | 70 |
| abstract_inverted_index.reference | 91 |
| abstract_inverted_index.residues, | 88 |
| abstract_inverted_index.selective | 19, 116 |
| abstract_inverted_index.stability | 101 |
| abstract_inverted_index.strongest | 76 |
| abstract_inverted_index.supported | 99 |
| abstract_inverted_index.validated | 39 |
| abstract_inverted_index.allosteric | 20, 117 |
| abstract_inverted_index.available. | 132 |
| abstract_inverted_index.identified | 109 |
| abstract_inverted_index.inhibition | 118 |
| abstract_inverted_index.internally | 40 |
| abstract_inverted_index.motivating | 15 |
| abstract_inverted_index.multilayer | 26 |
| abstract_inverted_index.perceptron | 27 |
| abstract_inverted_index.stability, | 81 |
| abstract_inverted_index.surpassing | 89 |
| abstract_inverted_index.warranting | 121 |
| abstract_inverted_index.BREED-based | 45 |
| abstract_inverted_index.externally, | 42 |
| abstract_inverted_index.hematologic | 11 |
| abstract_inverted_index.inhibitors, | 71 |
| abstract_inverted_index.inhibitors. | 21 |
| abstract_inverted_index.selectivity | 84 |
| abstract_inverted_index.therapeutic | 8 |
| abstract_inverted_index.validation, | 124 |
| abstract_inverted_index.experimental | 123 |
| abstract_inverted_index.pseudokinase | 2 |
| abstract_inverted_index.computational | 113 |
| abstract_inverted_index.hybridization | 47 |
| abstract_inverted_index.BRD3–emerged | 68 |
| abstract_inverted_index.JAK2-targeting | 36 |
| abstract_inverted_index.conformational | 80 |
| abstract_inverted_index.pharmacokinetic | 59 |
| abstract_inverted_index.compounds–BRD1, | 65 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |