Deep Learning in Palmprint Recognition-A Comprehensive Survey Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.32388/yz5tfy
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as they heavily depend on researchers’ prior knowledge. Deep learning (DL) has been introduced to address this limitation, leveraging its remarkable successes across various domains. While existing surveys focus narrowly on specific tasks within palmprint recognition—often grounded in traditional methodologies—there remains a significant gap in comprehensive research exploring DL-based approaches across all facets of palmprint recognition. This paper bridges that gap by thoroughly reviewing recent advancements in DL-powered palmprint recognition. The paper systematically examines progress across key tasks, including region-of-interest segmentation, feature extraction, and security/privacy-oriented challenges. Beyond highlighting these advancements, the paper identifies current challenges and uncovers promising opportunities for future research. By consolidating state-of-the-art progress, this review serves as a valuable resource for researchers, enabling them to stay abreast of cutting-edge technologies and drive innovation in palmprint recognition.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32388/yz5tfy
- OA Status
- gold
- Cited By
- 3
- References
- 166
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406511475
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406511475Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32388/yz5tfyDigital Object Identifier
- Title
-
Deep Learning in Palmprint Recognition-A Comprehensive SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-17Full publication date if available
- Authors
-
Chengrui Gao, Ziyuan Yang, Wei Jia, Lu Leng, Bob Zhang, Andrew Beng Jin TeohList of authors in order
- Landing page
-
https://doi.org/10.32388/yz5tfyPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32388/yz5tfyDirect OA link when available
- Concepts
-
Artificial intelligence, Deep learning, Computer science, Psychology, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
166Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406511475 |
|---|---|
| doi | https://doi.org/10.32388/yz5tfy |
| ids.doi | https://doi.org/10.32388/yz5tfy |
| ids.openalex | https://openalex.org/W4406511475 |
| fwci | 15.98045441 |
| type | preprint |
| title | Deep Learning in Palmprint Recognition-A Comprehensive Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10828 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Biometric Identification and Security |
| topics[1].id | https://openalex.org/T11448 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face recognition and analysis |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9623000025749207 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.566893994808197 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5130323171615601 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4503811001777649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3796519339084625 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.3552096486091614 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.566893994808197 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.5130323171615601 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4503811001777649 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3796519339084625 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.3552096486091614 |
| keywords[4].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.32388/yz5tfy |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32388/yz5tfy |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066363185 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Chengrui Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | Sichuan University |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengrui Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sichuan University |
| authorships[1].author.id | https://openalex.org/A5019886356 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0275-4098 |
| authorships[1].author.display_name | Ziyuan Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | Sichuan University |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziyuan Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sichuan University |
| authorships[2].author.id | https://openalex.org/A5100395308 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5628-6237 |
| authorships[2].author.display_name | Wei Jia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[2].affiliations[0].raw_affiliation_string | Hefei University of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I16365422 |
| authorships[2].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hefei University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei Jia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hefei University of Technology |
| authorships[3].author.id | https://openalex.org/A5048351097 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6858-424X |
| authorships[3].author.display_name | Lu Leng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I927504317 |
| authorships[3].affiliations[0].raw_affiliation_string | Nanchang Hangkong University |
| authorships[3].institutions[0].id | https://openalex.org/I927504317 |
| authorships[3].institutions[0].ror | https://ror.org/0369pvp92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I927504317 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanchang Hangkong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lu Leng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Nanchang Hangkong University |
| authorships[4].author.id | https://openalex.org/A5048088901 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2497-9519 |
| authorships[4].author.display_name | Bob Zhang |
| authorships[4].countries | MO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Macau |
| authorships[4].institutions[0].id | https://openalex.org/I204512498 |
| authorships[4].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[4].institutions[0].country_code | MO |
| authorships[4].institutions[0].display_name | University of Macau |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bob Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Macau |
| authorships[5].author.id | https://openalex.org/A5051093782 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5063-9484 |
| authorships[5].author.display_name | Andrew Beng Jin Teoh |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[5].affiliations[0].raw_affiliation_string | Yonsei University |
| authorships[5].institutions[0].id | https://openalex.org/I193775966 |
| authorships[5].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Yonsei University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Andrew Beng Jin Teoh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Yonsei University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32388/yz5tfy |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning in Palmprint Recognition-A Comprehensive Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10828 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Biometric Identification and Security |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32388/yz5tfy |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32388/yz5tfy |
| primary_location.id | doi:10.32388/yz5tfy |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32388/yz5tfy |
| publication_date | 2025-01-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3207211939, https://openalex.org/W4376127652, https://openalex.org/W4392472696, https://openalex.org/W4220843729, https://openalex.org/W4280499268, https://openalex.org/W4288049693, https://openalex.org/W4390789881, https://openalex.org/W2938046897, https://openalex.org/W2114214092, https://openalex.org/W4243097765, https://openalex.org/W2888620059, https://openalex.org/W2789377834, https://openalex.org/W3022425438, https://openalex.org/W4323317889, https://openalex.org/W1974900975, https://openalex.org/W2034114524, https://openalex.org/W2999529733, https://openalex.org/W2962949934, https://openalex.org/W4220929574, https://openalex.org/W2154579312, https://openalex.org/W2136922672, https://openalex.org/W2618530766, https://openalex.org/W1994002998, https://openalex.org/W1686810756, https://openalex.org/W1616262590, https://openalex.org/W2964350391, https://openalex.org/W3171007011, https://openalex.org/W2963163009, https://openalex.org/W2194775991, https://openalex.org/W3094502228, https://openalex.org/W3154620696, https://openalex.org/W3114381249, https://openalex.org/W2035273506, https://openalex.org/W2548447358, https://openalex.org/W2597845860, https://openalex.org/W2975173965, https://openalex.org/W2990686905, https://openalex.org/W2565076265, https://openalex.org/W2791437400, https://openalex.org/W2886676275, https://openalex.org/W3082690720, https://openalex.org/W4399563735, https://openalex.org/W2157364932, https://openalex.org/W2096733369, https://openalex.org/W4403674918, https://openalex.org/W2177274842, https://openalex.org/W2921789662, https://openalex.org/W2919115771, https://openalex.org/W3123311897, https://openalex.org/W2161969291, https://openalex.org/W3002157766, https://openalex.org/W4205480766, https://openalex.org/W2606063865, https://openalex.org/W2001759547, https://openalex.org/W2578183556, https://openalex.org/W2883595631, https://openalex.org/W3204677055, https://openalex.org/W3162640365, https://openalex.org/W4321488197, https://openalex.org/W4401452222, https://openalex.org/W4405304291, https://openalex.org/W4285590844, https://openalex.org/W4390691233, https://openalex.org/W4381736331, https://openalex.org/W2763042386, https://openalex.org/W2004169362, https://openalex.org/W2010954356, https://openalex.org/W4225277427, https://openalex.org/W2068424163, https://openalex.org/W1162253458, https://openalex.org/W2518263381, https://openalex.org/W4392251497, https://openalex.org/W4385945608, https://openalex.org/W2908366756, https://openalex.org/W2781754691, https://openalex.org/W2950901200, https://openalex.org/W2967716061, https://openalex.org/W2922191826, https://openalex.org/W2946300279, https://openalex.org/W3010868043, https://openalex.org/W3040429391, https://openalex.org/W3194214615, https://openalex.org/W4376851402, https://openalex.org/W3006654643, https://openalex.org/W4316924401, https://openalex.org/W4396941552, https://openalex.org/W3193957345, https://openalex.org/W3137157783, https://openalex.org/W4379805847, https://openalex.org/W2088716204, https://openalex.org/W4323644351, https://openalex.org/W4284896990, https://openalex.org/W4206624976, https://openalex.org/W3106786794, https://openalex.org/W4399357306, https://openalex.org/W320969129, https://openalex.org/W4284893157, https://openalex.org/W4389253088, https://openalex.org/W3004169094, https://openalex.org/W4387934883, https://openalex.org/W4396708755, https://openalex.org/W4285263917, https://openalex.org/W4390872342, https://openalex.org/W4393154914, https://openalex.org/W2083670679, https://openalex.org/W4402661265, https://openalex.org/W3147128036, https://openalex.org/W4285226733, https://openalex.org/W4394958733, https://openalex.org/W2510564846, https://openalex.org/W2586072845, https://openalex.org/W3002761142, https://openalex.org/W4316035538, https://openalex.org/W4386597223, https://openalex.org/W4403085253, https://openalex.org/W4404437411, https://openalex.org/W4403278216, https://openalex.org/W2966065417, https://openalex.org/W2971218990, https://openalex.org/W4214750778, https://openalex.org/W4319997133, https://openalex.org/W2997561079, https://openalex.org/W4402259759, https://openalex.org/W1968517241, https://openalex.org/W2018340704, https://openalex.org/W2291271393, https://openalex.org/W2736294736, https://openalex.org/W3199153801, https://openalex.org/W3139414259, https://openalex.org/W4391436250, https://openalex.org/W2997116349, https://openalex.org/W4377943991, https://openalex.org/W4403754892, https://openalex.org/W2770115918, https://openalex.org/W2979088942, https://openalex.org/W4313022684, https://openalex.org/W4280579565, https://openalex.org/W3008554008, https://openalex.org/W4210849495, https://openalex.org/W4385525529, https://openalex.org/W4386233691, https://openalex.org/W2103339782, https://openalex.org/W2053423543, https://openalex.org/W1967060501, https://openalex.org/W2144025519, https://openalex.org/W3003465473, https://openalex.org/W2111059501, https://openalex.org/W2126562928, https://openalex.org/W1512114279, https://openalex.org/W2586488560, https://openalex.org/W2769324646, https://openalex.org/W4239145390, https://openalex.org/W2140959843, https://openalex.org/W4386593251, https://openalex.org/W3083850392, https://openalex.org/W4220675832, https://openalex.org/W4320718476, https://openalex.org/W4387885831, https://openalex.org/W4401508170, https://openalex.org/W3133542152, https://openalex.org/W4399728346, https://openalex.org/W4319163914, https://openalex.org/W4390690081, https://openalex.org/W4285729166, https://openalex.org/W4402670262, https://openalex.org/W3102431071 |
| referenced_works_count | 166 |
| abstract_inverted_index.a | 5, 67, 136 |
| abstract_inverted_index.By | 128 |
| abstract_inverted_index.as | 4, 26, 135 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 11, 23, 63, 70, 92, 152 |
| abstract_inverted_index.of | 79, 146 |
| abstract_inverted_index.on | 30, 56 |
| abstract_inverted_index.to | 40, 143 |
| abstract_inverted_index.The | 96 |
| abstract_inverted_index.all | 77 |
| abstract_inverted_index.and | 109, 121, 149 |
| abstract_inverted_index.for | 17, 125, 139 |
| abstract_inverted_index.gap | 69, 86 |
| abstract_inverted_index.has | 2, 37 |
| abstract_inverted_index.its | 45 |
| abstract_inverted_index.key | 102 |
| abstract_inverted_index.the | 116 |
| abstract_inverted_index.(DL) | 36 |
| abstract_inverted_index.Deep | 34 |
| abstract_inverted_index.This | 82 |
| abstract_inverted_index.been | 38 |
| abstract_inverted_index.fall | 21 |
| abstract_inverted_index.stay | 144 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.them | 142 |
| abstract_inverted_index.they | 27 |
| abstract_inverted_index.this | 42, 132 |
| abstract_inverted_index.While | 51 |
| abstract_inverted_index.drive | 150 |
| abstract_inverted_index.focus | 54 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.paper | 83, 97, 117 |
| abstract_inverted_index.prior | 32 |
| abstract_inverted_index.short | 22 |
| abstract_inverted_index.tasks | 58 |
| abstract_inverted_index.these | 114 |
| abstract_inverted_index.Beyond | 112 |
| abstract_inverted_index.across | 48, 76, 101 |
| abstract_inverted_index.depend | 29 |
| abstract_inverted_index.facets | 78 |
| abstract_inverted_index.future | 126 |
| abstract_inverted_index.recent | 90 |
| abstract_inverted_index.review | 133 |
| abstract_inverted_index.serves | 134 |
| abstract_inverted_index.tasks, | 103 |
| abstract_inverted_index.widely | 9 |
| abstract_inverted_index.within | 59 |
| abstract_inverted_index.abreast | 145 |
| abstract_inverted_index.address | 41 |
| abstract_inverted_index.applied | 10 |
| abstract_inverted_index.bridges | 84 |
| abstract_inverted_index.current | 119 |
| abstract_inverted_index.diverse | 12 |
| abstract_inverted_index.emerged | 3 |
| abstract_inverted_index.feature | 107 |
| abstract_inverted_index.heavily | 28 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.remains | 66 |
| abstract_inverted_index.surveys | 53 |
| abstract_inverted_index.various | 49 |
| abstract_inverted_index.DL-based | 74 |
| abstract_inverted_index.domains. | 50 |
| abstract_inverted_index.enabling | 141 |
| abstract_inverted_index.examines | 99 |
| abstract_inverted_index.existing | 52 |
| abstract_inverted_index.grounded | 62 |
| abstract_inverted_index.learning | 35 |
| abstract_inverted_index.narrowly | 55 |
| abstract_inverted_index.progress | 100 |
| abstract_inverted_index.research | 72 |
| abstract_inverted_index.resource | 138 |
| abstract_inverted_index.specific | 57 |
| abstract_inverted_index.uncovers | 122 |
| abstract_inverted_index.valuable | 137 |
| abstract_inverted_index.Palmprint | 0 |
| abstract_inverted_index.biometric | 7 |
| abstract_inverted_index.exploring | 73 |
| abstract_inverted_index.including | 104 |
| abstract_inverted_index.palmprint | 18, 60, 80, 94, 153 |
| abstract_inverted_index.progress, | 131 |
| abstract_inverted_index.prominent | 6 |
| abstract_inverted_index.promising | 123 |
| abstract_inverted_index.research. | 127 |
| abstract_inverted_index.reviewing | 89 |
| abstract_inverted_index.successes | 47 |
| abstract_inverted_index.DL-powered | 93 |
| abstract_inverted_index.approaches | 75 |
| abstract_inverted_index.challenges | 120 |
| abstract_inverted_index.identifies | 118 |
| abstract_inverted_index.innovation | 151 |
| abstract_inverted_index.introduced | 39 |
| abstract_inverted_index.knowledge. | 33 |
| abstract_inverted_index.leveraging | 44 |
| abstract_inverted_index.remarkable | 46 |
| abstract_inverted_index.scenarios. | 13 |
| abstract_inverted_index.thoroughly | 88 |
| abstract_inverted_index.Traditional | 14 |
| abstract_inverted_index.capability, | 25 |
| abstract_inverted_index.challenges. | 111 |
| abstract_inverted_index.extraction, | 108 |
| abstract_inverted_index.handcrafted | 15 |
| abstract_inverted_index.limitation, | 43 |
| abstract_inverted_index.recognition | 1, 19 |
| abstract_inverted_index.significant | 68 |
| abstract_inverted_index.technology, | 8 |
| abstract_inverted_index.traditional | 64 |
| abstract_inverted_index.advancements | 91 |
| abstract_inverted_index.cutting-edge | 147 |
| abstract_inverted_index.highlighting | 113 |
| abstract_inverted_index.recognition. | 81, 95, 154 |
| abstract_inverted_index.researchers, | 140 |
| abstract_inverted_index.technologies | 148 |
| abstract_inverted_index.advancements, | 115 |
| abstract_inverted_index.comprehensive | 71 |
| abstract_inverted_index.consolidating | 129 |
| abstract_inverted_index.opportunities | 124 |
| abstract_inverted_index.segmentation, | 106 |
| abstract_inverted_index.representation | 24 |
| abstract_inverted_index.researchers’ | 31 |
| abstract_inverted_index.systematically | 98 |
| abstract_inverted_index.state-of-the-art | 130 |
| abstract_inverted_index.region-of-interest | 105 |
| abstract_inverted_index.recognition—often | 61 |
| abstract_inverted_index.methodologies—there | 65 |
| abstract_inverted_index.security/privacy-oriented | 110 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.96619526 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |