Deep Learning in the prediction of Angiography-proven Severe Coronary Stenosis in Patients with Apparently Normal Electrocardiograms Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.11.26.22282701
A bstract Patients with severe coronary artery stenosis may have apparently normal electrocardiograms (ECGs), making it difficult to detect the adverse health conditions during screening or physical examinations, resulting in them missing the optimal window of treatment. The goal of this study was to develop an artificial intelligence-based ECG model which can distinguish severe coronary stenosis (≥ 90%) from no or mild coronary stenosis (< 50%) in patients with apparently normal ECGs. Deep learning (DL) models trained from scratch with pre-trained parameters (transfer learning) were tested on ECG alone as well as on ECG along with clinical information (age, sex, hypertension, diabetes, dyslipidemia and smoking status). We also compared the performance of logistic regression for clinical information only and found that DL models trained from scratch with ECG alone can achieve a specificity of 0.746; however, they have low sensitivity, which is comparable to the performance of logistic regression with clinical data. Although adding clinical information to the ECG DL model trained from scratch can improve the sensitivity, it can reduce the specificity. Combining clinical information with the ECG transfer learning model provides the best performance, with a 0.847 AUC, 0.848 sensitivity, and 0.704 specificity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.11.26.22282701
- https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdf
- OA Status
- green
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311042197
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311042197Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.11.26.22282701Digital Object Identifier
- Title
-
Deep Learning in the prediction of Angiography-proven Severe Coronary Stenosis in Patients with Apparently Normal ElectrocardiogramsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-29Full publication date if available
- Authors
-
Zheng-Kai Xue, Shijia Geng, Shaohua Guo, Guanyu Mu, Bo Yu, Peng Wang, Sutao Hu, Weilun Xu, Yanhong Liu, Lei Yang, Huayue Tao, Kang‐Yin Chen, Shenda HongList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.11.26.22282701Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdfDirect OA link when available
- Concepts
-
Medicine, Logistic regression, Dyslipidemia, Cardiology, Internal medicine, Stenosis, Coronary angiography, Radiology, Myocardial infarction, ObesityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311042197 |
|---|---|
| doi | https://doi.org/10.1101/2022.11.26.22282701 |
| ids.doi | https://doi.org/10.1101/2022.11.26.22282701 |
| ids.openalex | https://openalex.org/W4311042197 |
| fwci | |
| type | preprint |
| title | Deep Learning in the prediction of Angiography-proven Severe Coronary Stenosis in Patients with Apparently Normal Electrocardiograms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T10217 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac electrophysiology and arrhythmias |
| topics[2].id | https://openalex.org/T10372 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Cardiac Imaging and Diagnostics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7581930160522461 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7330345511436462 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C2778096610 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7036073207855225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1476525 |
| concepts[2].display_name | Dyslipidemia |
| concepts[3].id | https://openalex.org/C164705383 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6211118698120117 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[3].display_name | Cardiology |
| concepts[4].id | https://openalex.org/C126322002 |
| concepts[4].level | 1 |
| concepts[4].score | 0.598746657371521 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[4].display_name | Internal medicine |
| concepts[5].id | https://openalex.org/C2780007028 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5939904451370239 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2343082 |
| concepts[5].display_name | Stenosis |
| concepts[6].id | https://openalex.org/C3019004856 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4909391701221466 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42297149 |
| concepts[6].display_name | Coronary angiography |
| concepts[7].id | https://openalex.org/C126838900 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32626473903656006 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[7].display_name | Radiology |
| concepts[8].id | https://openalex.org/C500558357 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0767509937286377 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12152 |
| concepts[8].display_name | Myocardial infarction |
| concepts[9].id | https://openalex.org/C511355011 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12174 |
| concepts[9].display_name | Obesity |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.7581930160522461 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.7330345511436462 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/dyslipidemia |
| keywords[2].score | 0.7036073207855225 |
| keywords[2].display_name | Dyslipidemia |
| keywords[3].id | https://openalex.org/keywords/cardiology |
| keywords[3].score | 0.6211118698120117 |
| keywords[3].display_name | Cardiology |
| keywords[4].id | https://openalex.org/keywords/internal-medicine |
| keywords[4].score | 0.598746657371521 |
| keywords[4].display_name | Internal medicine |
| keywords[5].id | https://openalex.org/keywords/stenosis |
| keywords[5].score | 0.5939904451370239 |
| keywords[5].display_name | Stenosis |
| keywords[6].id | https://openalex.org/keywords/coronary-angiography |
| keywords[6].score | 0.4909391701221466 |
| keywords[6].display_name | Coronary angiography |
| keywords[7].id | https://openalex.org/keywords/radiology |
| keywords[7].score | 0.32626473903656006 |
| keywords[7].display_name | Radiology |
| keywords[8].id | https://openalex.org/keywords/myocardial-infarction |
| keywords[8].score | 0.0767509937286377 |
| keywords[8].display_name | Myocardial infarction |
| language | en |
| locations[0].id | doi:10.1101/2022.11.26.22282701 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.11.26.22282701 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5081225316 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5721-3125 |
| authorships[0].author.display_name | Zheng-Kai Xue |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[0].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[0].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[0].institutions[1].id | https://openalex.org/I5740404 |
| authorships[0].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Tianjin Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhengkai Xue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[1].author.id | https://openalex.org/A5038223569 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shijia Geng |
| authorships[1].affiliations[0].raw_affiliation_string | HeartVoice Medical Technology, Hefei, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shijia Geng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | HeartVoice Medical Technology, Hefei, China |
| authorships[2].author.id | https://openalex.org/A5102819560 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9075-0929 |
| authorships[2].author.display_name | Shaohua Guo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[2].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[2].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[2].institutions[1].id | https://openalex.org/I5740404 |
| authorships[2].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Tianjin Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaohua Guo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[3].author.id | https://openalex.org/A5041867702 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guanyu Mu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[3].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[3].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[3].institutions[1].id | https://openalex.org/I5740404 |
| authorships[3].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Tianjin Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guanyu Mu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[4].author.id | https://openalex.org/A5100405522 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2041-0050 |
| authorships[4].author.display_name | Bo Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[4].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[4].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[4].institutions[1].id | https://openalex.org/I5740404 |
| authorships[4].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Tianjin Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bo Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[5].author.id | https://openalex.org/A5100395976 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-1009-6416 |
| authorships[5].author.display_name | Peng Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[5].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[5].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[5].institutions[1].id | https://openalex.org/I5740404 |
| authorships[5].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Tianjin Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Peng Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[6].author.id | https://openalex.org/A5054252627 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Sutao Hu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[6].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[6].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[6].institutions[1].id | https://openalex.org/I5740404 |
| authorships[6].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Tianjin Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sutao Hu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[7].author.id | https://openalex.org/A5030198603 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Weilun Xu |
| authorships[7].affiliations[0].raw_affiliation_string | HeartRhythm Medical, Beijing, China |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Weilun Xu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | HeartRhythm Medical, Beijing, China |
| authorships[8].author.id | https://openalex.org/A5100649504 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0749-2602 |
| authorships[8].author.display_name | Yanhong Liu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210088587, https://openalex.org/I5740404 |
| authorships[8].affiliations[0].raw_affiliation_string | Heart Center, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China |
| authorships[8].institutions[0].id | https://openalex.org/I5740404 |
| authorships[8].institutions[0].ror | https://ror.org/02mh8wx89 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I5740404 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Tianjin Medical University |
| authorships[8].institutions[1].id | https://openalex.org/I4210088587 |
| authorships[8].institutions[1].ror | https://ror.org/00911j719 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210088587 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Tianjin Third Central Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yanhong Liu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Heart Center, Tianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China |
| authorships[9].author.id | https://openalex.org/A5080415040 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3284-5617 |
| authorships[9].author.display_name | Lei Yang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210088587, https://openalex.org/I5740404 |
| authorships[9].affiliations[0].raw_affiliation_string | Heart Center, Tianjin Third Central Hospital, Tianjin, China |
| authorships[9].institutions[0].id | https://openalex.org/I5740404 |
| authorships[9].institutions[0].ror | https://ror.org/02mh8wx89 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I5740404 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Tianjin Medical University |
| authorships[9].institutions[1].id | https://openalex.org/I4210088587 |
| authorships[9].institutions[1].ror | https://ror.org/00911j719 |
| authorships[9].institutions[1].type | healthcare |
| authorships[9].institutions[1].lineage | https://openalex.org/I4210088587 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Tianjin Third Central Hospital |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lei Yang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Heart Center, Tianjin Third Central Hospital, Tianjin, China |
| authorships[10].author.id | https://openalex.org/A5019387446 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-8842-1261 |
| authorships[10].author.display_name | Huayue Tao |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| authorships[10].affiliations[0].raw_affiliation_string | The Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[10].institutions[0].id | https://openalex.org/I4210133270 |
| authorships[10].institutions[0].ror | https://ror.org/03rc99w60 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210133270 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Second Hospital of Tianjin Medical University |
| authorships[10].institutions[1].id | https://openalex.org/I5740404 |
| authorships[10].institutions[1].ror | https://ror.org/02mh8wx89 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I5740404 |
| authorships[10].institutions[1].country_code | CN |
| authorships[10].institutions[1].display_name | Tianjin Medical University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Huayue Tao |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | The Second Hospital of Tianjin Medical University, Tianjin, China |
| authorships[11].author.id | https://openalex.org/A5072318301 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7056-6438 |
| authorships[11].author.display_name | Kang‐Yin Chen |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[11].affiliations[0].raw_affiliation_string | School of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin, China |
| authorships[11].institutions[0].id | https://openalex.org/I162868743 |
| authorships[11].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | Tianjin University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Kangyin Chen |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | School of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin, China |
| authorships[12].author.id | https://openalex.org/A5080648149 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-7521-5127 |
| authorships[12].author.display_name | Shenda Hong |
| authorships[12].countries | CN |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[12].affiliations[0].raw_affiliation_string | Institute of Medical Technology, Health Science Center of Peking University, Beijing, China |
| authorships[12].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[12].affiliations[1].raw_affiliation_string | National Institute of Health Data Science, Peking University, Beijing, China |
| authorships[12].institutions[0].id | https://openalex.org/I20231570 |
| authorships[12].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[12].institutions[0].country_code | CN |
| authorships[12].institutions[0].display_name | Peking University |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Shenda Hong |
| authorships[12].is_corresponding | True |
| authorships[12].raw_affiliation_strings | Institute of Medical Technology, Health Science Center of Peking University, Beijing, China, National Institute of Health Data Science, Peking University, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning in the prediction of Angiography-proven Severe Coronary Stenosis in Patients with Apparently Normal Electrocardiograms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2039412011, https://openalex.org/W2393378262, https://openalex.org/W2987751125, https://openalex.org/W2372035975, https://openalex.org/W1572905580, https://openalex.org/W1964550047, https://openalex.org/W2366041794, https://openalex.org/W1988062963, https://openalex.org/W3214989315, https://openalex.org/W2174743250 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.11.26.22282701 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.11.26.22282701 |
| primary_location.id | doi:10.1101/2022.11.26.22282701 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/11/29/2022.11.26.22282701.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.11.26.22282701 |
| publication_date | 2022-11-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2917025828, https://openalex.org/W2953282350, https://openalex.org/W4313320129, https://openalex.org/W2972776056, https://openalex.org/W2794550444, https://openalex.org/W2794633590, https://openalex.org/W2901226889, https://openalex.org/W2796979148, https://openalex.org/W3136799519, https://openalex.org/W3199876486, https://openalex.org/W3104075323, https://openalex.org/W3033523981, https://openalex.org/W3195414453, https://openalex.org/W4225596218, https://openalex.org/W3021570371, https://openalex.org/W3081360282, https://openalex.org/W3122454529, https://openalex.org/W2085087376, https://openalex.org/W3011371150, https://openalex.org/W2148958558, https://openalex.org/W2040616060, https://openalex.org/W2962858109 |
| referenced_works_count | 22 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 131, 187 |
| abstract_inverted_index.DL | 121, 159 |
| abstract_inverted_index.We | 106 |
| abstract_inverted_index.an | 45 |
| abstract_inverted_index.as | 89, 91 |
| abstract_inverted_index.in | 29, 66 |
| abstract_inverted_index.is | 141 |
| abstract_inverted_index.it | 15, 168 |
| abstract_inverted_index.no | 59 |
| abstract_inverted_index.of | 35, 39, 111, 133, 146 |
| abstract_inverted_index.on | 86, 92 |
| abstract_inverted_index.or | 25, 60 |
| abstract_inverted_index.to | 17, 43, 143, 156 |
| abstract_inverted_index.ECG | 48, 87, 93, 127, 158, 178 |
| abstract_inverted_index.The | 37 |
| abstract_inverted_index.and | 103, 118, 192 |
| abstract_inverted_index.can | 51, 129, 164, 169 |
| abstract_inverted_index.for | 114 |
| abstract_inverted_index.low | 138 |
| abstract_inverted_index.may | 8 |
| abstract_inverted_index.the | 19, 32, 109, 144, 157, 166, 171, 177, 183 |
| abstract_inverted_index.was | 42 |
| abstract_inverted_index.(DL) | 74 |
| abstract_inverted_index.(≥ | 56 |
| abstract_inverted_index.50%) | 65 |
| abstract_inverted_index.90%) | 57 |
| abstract_inverted_index.AUC, | 189 |
| abstract_inverted_index.Deep | 72 |
| abstract_inverted_index.also | 107 |
| abstract_inverted_index.best | 184 |
| abstract_inverted_index.from | 58, 77, 124, 162 |
| abstract_inverted_index.goal | 38 |
| abstract_inverted_index.have | 9, 137 |
| abstract_inverted_index.mild | 61 |
| abstract_inverted_index.only | 117 |
| abstract_inverted_index.sex, | 99 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.them | 30 |
| abstract_inverted_index.they | 136 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.well | 90 |
| abstract_inverted_index.were | 84 |
| abstract_inverted_index.with | 3, 68, 79, 95, 126, 149, 176, 186 |
| abstract_inverted_index.(< | 64 |
| abstract_inverted_index.(age, | 98 |
| abstract_inverted_index.0.704 | 193 |
| abstract_inverted_index.0.847 | 188 |
| abstract_inverted_index.0.848 | 190 |
| abstract_inverted_index.ECGs. | 71 |
| abstract_inverted_index.alone | 88, 128 |
| abstract_inverted_index.along | 94 |
| abstract_inverted_index.data. | 151 |
| abstract_inverted_index.found | 119 |
| abstract_inverted_index.model | 49, 160, 181 |
| abstract_inverted_index.study | 41 |
| abstract_inverted_index.which | 50, 140 |
| abstract_inverted_index.0.746; | 134 |
| abstract_inverted_index.adding | 153 |
| abstract_inverted_index.artery | 6 |
| abstract_inverted_index.detect | 18 |
| abstract_inverted_index.during | 23 |
| abstract_inverted_index.health | 21 |
| abstract_inverted_index.making | 14 |
| abstract_inverted_index.models | 75, 122 |
| abstract_inverted_index.normal | 11, 70 |
| abstract_inverted_index.reduce | 170 |
| abstract_inverted_index.severe | 4, 53 |
| abstract_inverted_index.tested | 85 |
| abstract_inverted_index.window | 34 |
| abstract_inverted_index.(ECGs), | 13 |
| abstract_inverted_index.achieve | 130 |
| abstract_inverted_index.adverse | 20 |
| abstract_inverted_index.bstract | 1 |
| abstract_inverted_index.develop | 44 |
| abstract_inverted_index.improve | 165 |
| abstract_inverted_index.missing | 31 |
| abstract_inverted_index.optimal | 33 |
| abstract_inverted_index.scratch | 78, 125, 163 |
| abstract_inverted_index.smoking | 104 |
| abstract_inverted_index.trained | 76, 123, 161 |
| abstract_inverted_index.Although | 152 |
| abstract_inverted_index.Patients | 2 |
| abstract_inverted_index.clinical | 96, 115, 150, 154, 174 |
| abstract_inverted_index.compared | 108 |
| abstract_inverted_index.coronary | 5, 54, 62 |
| abstract_inverted_index.however, | 135 |
| abstract_inverted_index.learning | 73, 180 |
| abstract_inverted_index.logistic | 112, 147 |
| abstract_inverted_index.patients | 67 |
| abstract_inverted_index.physical | 26 |
| abstract_inverted_index.provides | 182 |
| abstract_inverted_index.status). | 105 |
| abstract_inverted_index.stenosis | 7, 55, 63 |
| abstract_inverted_index.transfer | 179 |
| abstract_inverted_index.(transfer | 82 |
| abstract_inverted_index.Combining | 173 |
| abstract_inverted_index.diabetes, | 101 |
| abstract_inverted_index.difficult | 16 |
| abstract_inverted_index.learning) | 83 |
| abstract_inverted_index.resulting | 28 |
| abstract_inverted_index.screening | 24 |
| abstract_inverted_index.apparently | 10, 69 |
| abstract_inverted_index.artificial | 46 |
| abstract_inverted_index.comparable | 142 |
| abstract_inverted_index.conditions | 22 |
| abstract_inverted_index.parameters | 81 |
| abstract_inverted_index.regression | 113, 148 |
| abstract_inverted_index.treatment. | 36 |
| abstract_inverted_index.distinguish | 52 |
| abstract_inverted_index.information | 97, 116, 155, 175 |
| abstract_inverted_index.performance | 110, 145 |
| abstract_inverted_index.pre-trained | 80 |
| abstract_inverted_index.specificity | 132 |
| abstract_inverted_index.dyslipidemia | 102 |
| abstract_inverted_index.performance, | 185 |
| abstract_inverted_index.sensitivity, | 139, 167, 191 |
| abstract_inverted_index.specificity. | 172, 194 |
| abstract_inverted_index.examinations, | 27 |
| abstract_inverted_index.hypertension, | 100 |
| abstract_inverted_index.electrocardiograms | 12 |
| abstract_inverted_index.intelligence-based | 47 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5019387446, https://openalex.org/A5072318301, https://openalex.org/A5080648149 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| corresponding_institution_ids | https://openalex.org/I162868743, https://openalex.org/I20231570, https://openalex.org/I4210133270, https://openalex.org/I5740404 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.29599774 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |