Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/elp2.70063
The transformer is an important equipment in power systems. However, prolonged abnormal conditions can lead to significant damage of the transformer equipment. The current finite element analysis (FEA) method for calculating the internal physical field of transformers is time‐consuming, limiting its practicality for fast simulation. This paper focuses on predicting the internal magnetic fields of transformers under overvoltage conditions, which cause irregular changes in the transformer magnetic fields due to overvoltage. Simulation datasets of transformer magnetic field under overvoltage conditions were acquired via the COMSOL software. Subsequent analysis elucidated the influence of overvoltage parameters on the electrical characteristics of transformers. Furthermore, the dimensionality of input features relevant to magnetic field prediction was expanded. Convolutional neural network (CNN) model was then employed to forecast the internal magnetic fields of transformers under overvoltage conditions. Experimental results were compared with Random Forest (RF), eXtreme Gradient Boosting (XGBoost) and deep neural network (DNN) models, demonstrating the efficiency of deep learning methods in predicting transformer magnetic fields under overvoltage conditions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/elp2.70063
- OA Status
- gold
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413206558
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413206558Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/elp2.70063Digital Object Identifier
- Title
-
Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Qingjun Peng, Hui Du, Zezhong Zheng, Haowei Zhu, Yuhang FangList of authors in order
- Landing page
-
https://doi.org/10.1049/elp2.70063Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/elp2.70063Direct OA link when available
- Concepts
-
Overvoltage, Transformer, Current transformer, Magnetic field, Artificial neural network, Finite element method, Engineering, Electrical engineering, Electronic engineering, Computer science, Voltage, Artificial intelligence, Physics, Structural engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413206558 |
|---|---|
| doi | https://doi.org/10.1049/elp2.70063 |
| ids.doi | https://doi.org/10.1049/elp2.70063 |
| ids.openalex | https://openalex.org/W4413206558 |
| fwci | 0.0 |
| type | article |
| title | Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions |
| biblio.issue | 1 |
| biblio.volume | 19 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11343 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Transformer Diagnostics and Insulation |
| topics[1].id | https://openalex.org/T11222 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2504 |
| topics[1].subfield.display_name | Electronic, Optical and Magnetic Materials |
| topics[1].display_name | Magnetic Properties and Applications |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2800 |
| apc_paid.value | 2500 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2800 |
| concepts[0].id | https://openalex.org/C15703209 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8798947930335999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q333883 |
| concepts[0].display_name | Overvoltage |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7144654393196106 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C133770746 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5518860220909119 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q856535 |
| concepts[2].display_name | Current transformer |
| concepts[3].id | https://openalex.org/C115260700 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5354533195495605 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11408 |
| concepts[3].display_name | Magnetic field |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4878990352153778 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C135628077 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45537906885147095 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[5].display_name | Finite element method |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4523627460002899 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C119599485 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43480178713798523 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[7].display_name | Electrical engineering |
| concepts[8].id | https://openalex.org/C24326235 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4295163154602051 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[8].display_name | Electronic engineering |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.39006009697914124 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3191226124763489 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2494465410709381 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2097981870174408 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C66938386 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16298916935920715 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[13].display_name | Structural engineering |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/overvoltage |
| keywords[0].score | 0.8798947930335999 |
| keywords[0].display_name | Overvoltage |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.7144654393196106 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/current-transformer |
| keywords[2].score | 0.5518860220909119 |
| keywords[2].display_name | Current transformer |
| keywords[3].id | https://openalex.org/keywords/magnetic-field |
| keywords[3].score | 0.5354533195495605 |
| keywords[3].display_name | Magnetic field |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.4878990352153778 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/finite-element-method |
| keywords[5].score | 0.45537906885147095 |
| keywords[5].display_name | Finite element method |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.4523627460002899 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/electrical-engineering |
| keywords[7].score | 0.43480178713798523 |
| keywords[7].display_name | Electrical engineering |
| keywords[8].id | https://openalex.org/keywords/electronic-engineering |
| keywords[8].score | 0.4295163154602051 |
| keywords[8].display_name | Electronic engineering |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.39006009697914124 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.3191226124763489 |
| keywords[10].display_name | Voltage |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2494465410709381 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.2097981870174408 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/structural-engineering |
| keywords[13].score | 0.16298916935920715 |
| keywords[13].display_name | Structural engineering |
| language | en |
| locations[0].id | doi:10.1049/elp2.70063 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3026325 |
| locations[0].source.issn | 1751-8660, 1751-8679 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-8660 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Electric Power Applications |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Electric Power Applications |
| locations[0].landing_page_url | https://doi.org/10.1049/elp2.70063 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5049258548 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0026-5733 |
| authorships[0].author.display_name | Qingjun Peng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74872605 |
| authorships[0].affiliations[0].raw_affiliation_string | Electric Power Research Institute of Yunnan Power Grid Corporation Kunming China |
| authorships[0].institutions[0].id | https://openalex.org/I74872605 |
| authorships[0].institutions[0].ror | https://ror.org/03hkh9419 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I74872605 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China Southern Power Grid (China) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingjun Peng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electric Power Research Institute of Yunnan Power Grid Corporation Kunming China |
| authorships[1].author.id | https://openalex.org/A5049752140 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-6913-9013 |
| authorships[1].author.display_name | Hui Du |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[1].institutions[0].id | https://openalex.org/I150229711 |
| authorships[1].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hantao Du |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[2].author.id | https://openalex.org/A5083627327 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5615-5015 |
| authorships[2].author.display_name | Zezhong Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I3018263800 |
| authorships[2].affiliations[1].raw_affiliation_string | Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou China |
| authorships[2].institutions[0].id | https://openalex.org/I3018263800 |
| authorships[2].institutions[0].ror | https://ror.org/04mvpxy20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3018263800 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huzhou University |
| authorships[2].institutions[1].id | https://openalex.org/I150229711 |
| authorships[2].institutions[1].ror | https://ror.org/04qr3zq92 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I150229711 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | University of Electronic Science and Technology of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zezhong Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China, Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou China |
| authorships[3].author.id | https://openalex.org/A5014151049 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5322-4153 |
| authorships[3].author.display_name | Haowei Zhu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[3].institutions[0].id | https://openalex.org/I150229711 |
| authorships[3].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haowei Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[4].author.id | https://openalex.org/A5109774545 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuhang Fang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| authorships[4].institutions[0].id | https://openalex.org/I150229711 |
| authorships[4].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuhang Fang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Resources and Environment University of Electronic Science and Technology of China Chengdu China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/elp2.70063 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Model for Magnetic Field Prediction of Transformers Under Overvoltage Conditions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11343 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Transformer Diagnostics and Insulation |
| related_works | https://openalex.org/W2953949064, https://openalex.org/W4384067907, https://openalex.org/W2367120910, https://openalex.org/W1548538914, https://openalex.org/W2943033531, https://openalex.org/W2777881905, https://openalex.org/W3042023269, https://openalex.org/W2131904577, https://openalex.org/W4251463116, https://openalex.org/W2159114212 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/elp2.70063 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3026325 |
| best_oa_location.source.issn | 1751-8660, 1751-8679 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-8660 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Electric Power Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Electric Power Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1049/elp2.70063 |
| primary_location.id | doi:10.1049/elp2.70063 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3026325 |
| primary_location.source.issn | 1751-8660, 1751-8679 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-8660 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Electric Power Applications |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Electric Power Applications |
| primary_location.landing_page_url | https://doi.org/10.1049/elp2.70063 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3112194498, https://openalex.org/W3022348214, https://openalex.org/W2512262549, https://openalex.org/W2354173401, https://openalex.org/W2981307453, https://openalex.org/W2003448487, https://openalex.org/W2990240688, https://openalex.org/W3134684220, https://openalex.org/W3178590964, https://openalex.org/W3128873360, https://openalex.org/W2979711203, https://openalex.org/W2999123549, https://openalex.org/W2921710869, https://openalex.org/W4291156125, https://openalex.org/W3188145644, https://openalex.org/W4324125107, https://openalex.org/W4400438785, https://openalex.org/W4388871793, https://openalex.org/W2911964244, https://openalex.org/W2919115771, https://openalex.org/W3124539583, https://openalex.org/W2605418509, https://openalex.org/W4381381689, https://openalex.org/W2587288333, https://openalex.org/W3011193865, https://openalex.org/W2604944342, https://openalex.org/W3182706339, https://openalex.org/W3208261418, https://openalex.org/W2048040918 |
| referenced_works_count | 29 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.in | 7, 64, 158 |
| abstract_inverted_index.is | 3, 38 |
| abstract_inverted_index.of | 19, 36, 55, 74, 92, 99, 104, 128, 154 |
| abstract_inverted_index.on | 49, 95 |
| abstract_inverted_index.to | 16, 70, 108, 122 |
| abstract_inverted_index.The | 1, 23 |
| abstract_inverted_index.and | 145 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.due | 69 |
| abstract_inverted_index.for | 30, 43 |
| abstract_inverted_index.its | 41 |
| abstract_inverted_index.the | 20, 32, 51, 65, 84, 90, 96, 102, 124, 152 |
| abstract_inverted_index.via | 83 |
| abstract_inverted_index.was | 112, 119 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.deep | 146, 155 |
| abstract_inverted_index.fast | 44 |
| abstract_inverted_index.lead | 15 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.were | 81, 135 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.(CNN) | 117 |
| abstract_inverted_index.(DNN) | 149 |
| abstract_inverted_index.(FEA) | 28 |
| abstract_inverted_index.(RF), | 140 |
| abstract_inverted_index.cause | 61 |
| abstract_inverted_index.field | 35, 77, 110 |
| abstract_inverted_index.input | 105 |
| abstract_inverted_index.model | 118 |
| abstract_inverted_index.paper | 47 |
| abstract_inverted_index.power | 8 |
| abstract_inverted_index.under | 57, 78, 130, 163 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.COMSOL | 85 |
| abstract_inverted_index.Forest | 139 |
| abstract_inverted_index.Random | 138 |
| abstract_inverted_index.damage | 18 |
| abstract_inverted_index.fields | 54, 68, 127, 162 |
| abstract_inverted_index.finite | 25 |
| abstract_inverted_index.method | 29 |
| abstract_inverted_index.neural | 115, 147 |
| abstract_inverted_index.changes | 63 |
| abstract_inverted_index.current | 24 |
| abstract_inverted_index.eXtreme | 141 |
| abstract_inverted_index.element | 26 |
| abstract_inverted_index.focuses | 48 |
| abstract_inverted_index.methods | 157 |
| abstract_inverted_index.models, | 150 |
| abstract_inverted_index.network | 116, 148 |
| abstract_inverted_index.results | 134 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Boosting | 143 |
| abstract_inverted_index.Gradient | 142 |
| abstract_inverted_index.However, | 10 |
| abstract_inverted_index.abnormal | 12 |
| abstract_inverted_index.acquired | 82 |
| abstract_inverted_index.analysis | 27, 88 |
| abstract_inverted_index.compared | 136 |
| abstract_inverted_index.datasets | 73 |
| abstract_inverted_index.employed | 121 |
| abstract_inverted_index.features | 106 |
| abstract_inverted_index.forecast | 123 |
| abstract_inverted_index.internal | 33, 52, 125 |
| abstract_inverted_index.learning | 156 |
| abstract_inverted_index.limiting | 40 |
| abstract_inverted_index.magnetic | 53, 67, 76, 109, 126, 161 |
| abstract_inverted_index.physical | 34 |
| abstract_inverted_index.relevant | 107 |
| abstract_inverted_index.systems. | 9 |
| abstract_inverted_index.(XGBoost) | 144 |
| abstract_inverted_index.equipment | 6 |
| abstract_inverted_index.expanded. | 113 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.influence | 91 |
| abstract_inverted_index.irregular | 62 |
| abstract_inverted_index.prolonged | 11 |
| abstract_inverted_index.software. | 86 |
| abstract_inverted_index.Simulation | 72 |
| abstract_inverted_index.Subsequent | 87 |
| abstract_inverted_index.conditions | 13, 80 |
| abstract_inverted_index.efficiency | 153 |
| abstract_inverted_index.electrical | 97 |
| abstract_inverted_index.elucidated | 89 |
| abstract_inverted_index.equipment. | 22 |
| abstract_inverted_index.parameters | 94 |
| abstract_inverted_index.predicting | 50, 159 |
| abstract_inverted_index.prediction | 111 |
| abstract_inverted_index.calculating | 31 |
| abstract_inverted_index.conditions, | 59 |
| abstract_inverted_index.conditions. | 132, 165 |
| abstract_inverted_index.overvoltage | 58, 79, 93, 131, 164 |
| abstract_inverted_index.significant | 17 |
| abstract_inverted_index.simulation. | 45 |
| abstract_inverted_index.transformer | 2, 21, 66, 75, 160 |
| abstract_inverted_index.Experimental | 133 |
| abstract_inverted_index.Furthermore, | 101 |
| abstract_inverted_index.overvoltage. | 71 |
| abstract_inverted_index.practicality | 42 |
| abstract_inverted_index.transformers | 37, 56, 129 |
| abstract_inverted_index.Convolutional | 114 |
| abstract_inverted_index.demonstrating | 151 |
| abstract_inverted_index.transformers. | 100 |
| abstract_inverted_index.dimensionality | 103 |
| abstract_inverted_index.characteristics | 98 |
| abstract_inverted_index.time‐consuming, | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.37502125 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |