Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study Article Swipe
Mizuho Nishio
,
Daigo Kobayashi
,
Eiko Nishioka
,
Hidetoshi Matsuo
,
Yasuyo Urase
,
Koji Onoue
,
Reiichi Ishikura
,
Yuri Kitamura
,
E Sakai
,
Masaru Tomita
,
Akihiro Hamanaka
,
Takamichi Murakami
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-022-11990-3
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-022-11990-3
Related Topics
Concepts
Coronavirus disease 2019 (COVID-19)
Pneumonia
Center (category theory)
2019-20 coronavirus outbreak
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Retrospective cohort study
Medicine
Computer science
Viral pneumonia
Artificial intelligence
Virology
Internal medicine
Disease
Infectious disease (medical specialty)
Crystallography
Outbreak
Chemistry
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-022-11990-3
- https://www.nature.com/articles/s41598-022-11990-3.pdf
- OA Status
- gold
- Cited By
- 28
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4280532850
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4280532850Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-022-11990-3Digital Object Identifier
- Title
-
Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-17Full publication date if available
- Authors
-
Mizuho Nishio, Daigo Kobayashi, Eiko Nishioka, Hidetoshi Matsuo, Yasuyo Urase, Koji Onoue, Reiichi Ishikura, Yuri Kitamura, E Sakai, Masaru Tomita, Akihiro Hamanaka, Takamichi MurakamiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-022-11990-3Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-022-11990-3.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-022-11990-3.pdfDirect OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Pneumonia, Center (category theory), 2019-20 coronavirus outbreak, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Retrospective cohort study, Medicine, Computer science, Viral pneumonia, Artificial intelligence, Virology, Internal medicine, Disease, Infectious disease (medical specialty), Crystallography, Outbreak, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
28Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 9, 2023: 10, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4280532850 |
|---|---|
| doi | https://doi.org/10.1038/s41598-022-11990-3 |
| ids.doi | https://doi.org/10.1038/s41598-022-11990-3 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35581272 |
| ids.openalex | https://openalex.org/W4280532850 |
| fwci | 5.46698634 |
| mesh[0].qualifier_ui | Q000000981 |
| mesh[0].descriptor_ui | D000086382 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | diagnostic imaging |
| mesh[0].descriptor_name | COVID-19 |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D011014 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Pneumonia |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012189 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Retrospective Studies |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000086402 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | SARS-CoV-2 |
| mesh[6].qualifier_ui | Q000000981 |
| mesh[6].descriptor_ui | D000086382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | diagnostic imaging |
| mesh[6].descriptor_name | COVID-19 |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000175 |
| mesh[9].descriptor_ui | D011014 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnosis |
| mesh[9].descriptor_name | Pneumonia |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012189 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Retrospective Studies |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000086402 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | SARS-CoV-2 |
| type | article |
| title | Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study |
| awards[0].id | https://openalex.org/G8804604710 |
| awards[0].funder_id | https://openalex.org/F4320334764 |
| awards[0].display_name | |
| awards[0].funder_award_id | 22K07665 |
| awards[0].funder_display_name | Japan Society for the Promotion of Science |
| awards[1].id | https://openalex.org/G5986048281 |
| awards[1].funder_id | https://openalex.org/F4320334764 |
| awards[1].display_name | |
| awards[1].funder_award_id | 19H03599 |
| awards[1].funder_display_name | Japan Society for the Promotion of Science |
| awards[2].id | https://openalex.org/G4880767060 |
| awards[2].funder_id | https://openalex.org/F4320334764 |
| awards[2].display_name | |
| awards[2].funder_award_id | JP19K17232 |
| awards[2].funder_display_name | Japan Society for the Promotion of Science |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | 8214 |
| biblio.first_page | 8214 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T11636 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9861999750137329 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2718 |
| topics[1].subfield.display_name | Health Informatics |
| topics[1].display_name | Artificial Intelligence in Healthcare and Education |
| topics[2].id | https://openalex.org/T12439 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9764000177383423 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3500 |
| topics[2].subfield.display_name | General Dentistry |
| topics[2].display_name | Dental Research and COVID-19 |
| funders[0].id | https://openalex.org/F4320334764 |
| funders[0].ror | https://ror.org/00hhkn466 |
| funders[0].display_name | Japan Society for the Promotion of Science |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8646190166473389 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C2777914695 |
| concepts[1].level | 2 |
| concepts[1].score | 0.80576491355896 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12192 |
| concepts[1].display_name | Pneumonia |
| concepts[2].id | https://openalex.org/C2779463800 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6709121465682983 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5062222 |
| concepts[2].display_name | Center (category theory) |
| concepts[3].id | https://openalex.org/C3006700255 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6151458621025085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[3].display_name | 2019-20 coronavirus outbreak |
| concepts[4].id | https://openalex.org/C3007834351 |
| concepts[4].level | 5 |
| concepts[4].score | 0.5830693244934082 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[5].id | https://openalex.org/C167135981 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5671728253364563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2146302 |
| concepts[5].display_name | Retrospective cohort study |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4555444121360779 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.45526957511901855 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C2778158872 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4364299178123474 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2603200 |
| concepts[8].display_name | Viral pneumonia |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4030202031135559 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C159047783 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2960127592086792 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[10].display_name | Virology |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.17481106519699097 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| concepts[13].id | https://openalex.org/C524204448 |
| concepts[13].level | 3 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[13].display_name | Infectious disease (medical specialty) |
| concepts[14].id | https://openalex.org/C8010536 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[14].display_name | Crystallography |
| concepts[15].id | https://openalex.org/C116675565 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[15].display_name | Outbreak |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.8646190166473389 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/pneumonia |
| keywords[1].score | 0.80576491355896 |
| keywords[1].display_name | Pneumonia |
| keywords[2].id | https://openalex.org/keywords/center |
| keywords[2].score | 0.6709121465682983 |
| keywords[2].display_name | Center (category theory) |
| keywords[3].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[3].score | 0.6151458621025085 |
| keywords[3].display_name | 2019-20 coronavirus outbreak |
| keywords[4].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[4].score | 0.5830693244934082 |
| keywords[4].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[5].id | https://openalex.org/keywords/retrospective-cohort-study |
| keywords[5].score | 0.5671728253364563 |
| keywords[5].display_name | Retrospective cohort study |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.4555444121360779 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.45526957511901855 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/viral-pneumonia |
| keywords[8].score | 0.4364299178123474 |
| keywords[8].display_name | Viral pneumonia |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4030202031135559 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/virology |
| keywords[10].score | 0.2960127592086792 |
| keywords[10].display_name | Virology |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.17481106519699097 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1038/s41598-022-11990-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-022-11990-3.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-022-11990-3 |
| locations[1].id | pmid:35581272 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35581272 |
| locations[2].id | pmh:oai:infocom.co.jp:G0000003oai:90009520 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401034 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Josai University Repository of Academia (Josai University) |
| locations[2].source.host_organization | https://openalex.org/I201389808 |
| locations[2].source.host_organization_name | Josai University |
| locations[2].source.host_organization_lineage | https://openalex.org/I201389808 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Journal Article |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | |
| locations[3].id | pmh:oai:doaj.org/article:3fb6903f49cf4d4cb7f55ba53cbbe0d6 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022) |
| locations[3].landing_page_url | https://doaj.org/article/3fb6903f49cf4d4cb7f55ba53cbbe0d6 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9113076 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sci Rep |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9113076 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5066648889 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5870-0868 |
| authorships[0].author.display_name | Mizuho Nishio |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I65837984 |
| authorships[0].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Kobe University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mizuho Nishio |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[1].author.id | https://openalex.org/A5047069425 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4756-5725 |
| authorships[1].author.display_name | Daigo Kobayashi |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I65837984 |
| authorships[1].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Kobe University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daigo Kobayashi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[2].author.id | https://openalex.org/A5044204506 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Eiko Nishioka |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I65837984 |
| authorships[2].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Kobe University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eiko Nishioka |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[3].author.id | https://openalex.org/A5014730894 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9684-4632 |
| authorships[3].author.display_name | Hidetoshi Matsuo |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I65837984 |
| authorships[3].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Kobe University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hidetoshi Matsuo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[4].author.id | https://openalex.org/A5021113649 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1014-9258 |
| authorships[4].author.display_name | Yasuyo Urase |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I65837984 |
| authorships[4].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Kobe University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yasuyo Urase |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[5].author.id | https://openalex.org/A5040670452 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Koji Onoue |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210161700 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I4210161700 |
| authorships[5].institutions[0].ror | https://ror.org/04j4nak57 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210161700 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Kobe City Medical Center General Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Koji Onoue |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan |
| authorships[6].author.id | https://openalex.org/A5030456577 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4454-3923 |
| authorships[6].author.display_name | Reiichi Ishikura |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210161700 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I4210161700 |
| authorships[6].institutions[0].ror | https://ror.org/04j4nak57 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210161700 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Kobe City Medical Center General Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Reiichi Ishikura |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiology, Kobe City Medical Center General Hospital, 2-1-1 Minatojimaminamimachi, Chuo-ku, Kobe, 650-0047, Japan |
| authorships[7].author.id | https://openalex.org/A5103827934 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Yuri Kitamura |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210120934 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Diagnostic Radiology, Kobe City Nishi-Kobe Medical Center, 5-7-1 Kojidai, Nishi-ku, Kobe, 651-2273, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I4210120934 |
| authorships[7].institutions[0].ror | https://ror.org/02mvsxw13 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210120934 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Kobe City Nishi-Kobe Medical Center |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yuri Kitamura |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Diagnostic Radiology, Kobe City Nishi-Kobe Medical Center, 5-7-1 Kojidai, Nishi-ku, Kobe, 651-2273, Japan |
| authorships[8].author.id | https://openalex.org/A5079445678 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | E Sakai |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210146857 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Radiology, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno-cho kanno, Kakogawa, 675-8555, Japan |
| authorships[8].institutions[0].id | https://openalex.org/I4210146857 |
| authorships[8].institutions[0].ror | https://ror.org/05gw5ee29 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210146857 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Edogawa Hospital |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Eiro Sakai |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Radiology, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno-cho kanno, Kakogawa, 675-8555, Japan |
| authorships[9].author.id | https://openalex.org/A5015575713 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3423-377X |
| authorships[9].author.display_name | Masaru Tomita |
| authorships[9].countries | JP |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210111769 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Radiology, Kita Harima Medical Center, 926-250 Ichiba-cho, Ono, 675-1392, Japan |
| authorships[9].institutions[0].id | https://openalex.org/I4210111769 |
| authorships[9].institutions[0].ror | https://ror.org/01swdcs64 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210111769 |
| authorships[9].institutions[0].country_code | JP |
| authorships[9].institutions[0].display_name | Tokyo-Kita Medical Center |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Masaru Tomita |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Radiology, Kita Harima Medical Center, 926-250 Ichiba-cho, Ono, 675-1392, Japan |
| authorships[10].author.id | https://openalex.org/A5088148061 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Akihiro Hamanaka |
| authorships[10].countries | JP |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210097704 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Radiology, Hyogo Prefectural Awaji Medical Center, 1-1-137 Shioya, Sumoto, 656-0021, Japan |
| authorships[10].institutions[0].id | https://openalex.org/I4210097704 |
| authorships[10].institutions[0].ror | https://ror.org/00w1fsg08 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210097704 |
| authorships[10].institutions[0].country_code | JP |
| authorships[10].institutions[0].display_name | Hyogo Prefectural Awaji Medical Center |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Akihiro Hamanaka |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Radiology, Hyogo Prefectural Awaji Medical Center, 1-1-137 Shioya, Sumoto, 656-0021, Japan |
| authorships[11].author.id | https://openalex.org/A5003394557 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7782-548X |
| authorships[11].author.display_name | Takamichi Murakami |
| authorships[11].countries | JP |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| authorships[11].institutions[0].id | https://openalex.org/I65837984 |
| authorships[11].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[11].institutions[0].country_code | JP |
| authorships[11].institutions[0].display_name | Kobe University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Takamichi Murakami |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-022-11990-3.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4200329650, https://openalex.org/W3127156785, https://openalex.org/W3009669391, https://openalex.org/W4206669628, https://openalex.org/W4205317059, https://openalex.org/W3005417802, https://openalex.org/W3084498529, https://openalex.org/W3171943759, https://openalex.org/W4226296940, https://openalex.org/W3012050440 |
| cited_by_count | 28 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1038/s41598-022-11990-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-022-11990-3.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-022-11990-3 |
| primary_location.id | doi:10.1038/s41598-022-11990-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-022-11990-3.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-022-11990-3 |
| publication_date | 2022-05-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3008985036, https://openalex.org/W3010381061, https://openalex.org/W2809254203, https://openalex.org/W3093282011, https://openalex.org/W3131326546, https://openalex.org/W3017855299, https://openalex.org/W3031327998, https://openalex.org/W3091770411, https://openalex.org/W3004227146, https://openalex.org/W3134978274, https://openalex.org/W3107538751, https://openalex.org/W2896817483, https://openalex.org/W2581082771, https://openalex.org/W2557738935, https://openalex.org/W3154514470, https://openalex.org/W3094764353, https://openalex.org/W3035160371, https://openalex.org/W2616247523, https://openalex.org/W2912664121, https://openalex.org/W3131964007, https://openalex.org/W6675354045, https://openalex.org/W2006617902, https://openalex.org/W3131569973, https://openalex.org/W2010158189, https://openalex.org/W3106539405, https://openalex.org/W3105081694, https://openalex.org/W3102564565 |
| referenced_works_count | 27 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5066648889 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I65837984 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.9480591 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |