Deep learning model of concrete dam deformation prediction based on CNN Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1088/1755-1315/580/1/012042
The concrete dam deformation prediction model is a key measure to predict the evolution of structural behavior and evaluate the safe service status. This paper uses open-source deep learning framework TensorFlow as the platform and uses the mature convolutional neural network technology in deep learning theory to establish the concrete dam deformation safety prediction model based on a deep learning. The application of engineering examples shows that the residual map, mean square error, and average percentage error are used as the model fitting and prediction accuracy evaluation standards. Compared with the shallow neural network model and the traditional Statistical model, the concrete dam deformation prediction model based on deep learning has higher prediction accuracy and more stable performance, providing a new method for concrete dam deformation monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1755-1315/580/1/012042
- OA Status
- diamond
- Cited By
- 7
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3105707231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3105707231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1755-1315/580/1/012042Digital Object Identifier
- Title
-
Deep learning model of concrete dam deformation prediction based on CNNWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-01Full publication date if available
- Authors
-
Xi Wen, Jie Yang, Jintao Song, Xudong QuList of authors in order
- Landing page
-
https://doi.org/10.1088/1755-1315/580/1/012042Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1755-1315/580/1/012042Direct OA link when available
- Concepts
-
Deep learning, Convolutional neural network, Residual, Deformation (meteorology), Artificial neural network, Computer science, Artificial intelligence, Mean squared error, Measure (data warehouse), Machine learning, Geotechnical engineering, Structural engineering, Engineering, Data mining, Geology, Algorithm, Statistics, Mathematics, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3, 2022: 2, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3105707231 |
|---|---|
| doi | https://doi.org/10.1088/1755-1315/580/1/012042 |
| ids.doi | https://doi.org/10.1088/1755-1315/580/1/012042 |
| ids.mag | 3105707231 |
| ids.openalex | https://openalex.org/W3105707231 |
| fwci | 4.14047687 |
| type | article |
| title | Deep learning model of concrete dam deformation prediction based on CNN |
| biblio.issue | 1 |
| biblio.volume | 580 |
| biblio.last_page | 012042 |
| biblio.first_page | 012042 |
| topics[0].id | https://openalex.org/T12293 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Dam Engineering and Safety |
| topics[1].id | https://openalex.org/T10535 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9854000210762024 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Landslides and related hazards |
| topics[2].id | https://openalex.org/T12022 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.982200026512146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Hydraulic flow and structures |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7383700013160706 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6828856468200684 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C155512373 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6549095511436462 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[2].display_name | Residual |
| concepts[3].id | https://openalex.org/C204366326 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6378573179244995 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3027650 |
| concepts[3].display_name | Deformation (meteorology) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.596507728099823 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5870141983032227 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5841449499130249 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C139945424 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4715157747268677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[7].display_name | Mean squared error |
| concepts[8].id | https://openalex.org/C2780009758 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4696860611438751 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[8].display_name | Measure (data warehouse) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.42973294854164124 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C187320778 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4131931662559509 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[10].display_name | Geotechnical engineering |
| concepts[11].id | https://openalex.org/C66938386 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34372326731681824 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[11].display_name | Structural engineering |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2640526294708252 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2547707259654999 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18829482793807983 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14004001021385193 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12226435542106628 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.10148301720619202 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C111368507 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[18].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.7383700013160706 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6828856468200684 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/residual |
| keywords[2].score | 0.6549095511436462 |
| keywords[2].display_name | Residual |
| keywords[3].id | https://openalex.org/keywords/deformation |
| keywords[3].score | 0.6378573179244995 |
| keywords[3].display_name | Deformation (meteorology) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.596507728099823 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5870141983032227 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5841449499130249 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/mean-squared-error |
| keywords[7].score | 0.4715157747268677 |
| keywords[7].display_name | Mean squared error |
| keywords[8].id | https://openalex.org/keywords/measure |
| keywords[8].score | 0.4696860611438751 |
| keywords[8].display_name | Measure (data warehouse) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.42973294854164124 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[10].score | 0.4131931662559509 |
| keywords[10].display_name | Geotechnical engineering |
| keywords[11].id | https://openalex.org/keywords/structural-engineering |
| keywords[11].score | 0.34372326731681824 |
| keywords[11].display_name | Structural engineering |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.2640526294708252 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.2547707259654999 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.18829482793807983 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.14004001021385193 |
| keywords[15].display_name | Algorithm |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.12226435542106628 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.10148301720619202 |
| keywords[17].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1088/1755-1315/580/1/012042 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210195883 |
| locations[0].source.issn | 1755-1307, 1755-1315 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1755-1307 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IOP Conference Series Earth and Environmental Science |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IOP Conference Series: Earth and Environmental Science |
| locations[0].landing_page_url | https://doi.org/10.1088/1755-1315/580/1/012042 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101827365 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-4301-3798 |
| authorships[0].author.display_name | Xi Wen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[0].affiliations[1].raw_affiliation_string | Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design, Xi’an 710001, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wen Xi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China, Shaanxi Province Institute of Water Resources and Electric Power Investigation and Design, Xi’an 710001, China |
| authorships[1].author.id | https://openalex.org/A5100681896 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3706-2462 |
| authorships[1].author.display_name | Jie Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[2].author.id | https://openalex.org/A5008102102 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jintao Song |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jintao Song |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[3].author.id | https://openalex.org/A5101428380 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3630-3666 |
| authorships[3].author.display_name | Xudong Qu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131919 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].ror | https://ror.org/038avdt50 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210131919 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xudong Qu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Water Resources and hydro-electric Engineering, Xi’an University of Technology, Xi’an 710048, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1755-1315/580/1/012042 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning model of concrete dam deformation prediction based on CNN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12293 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Dam Engineering and Safety |
| related_works | https://openalex.org/W4321369474, https://openalex.org/W4312417841, https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W4200173597, https://openalex.org/W4311257506, https://openalex.org/W2337926734, https://openalex.org/W4366224123, https://openalex.org/W4320802194, https://openalex.org/W2995227436 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1755-1315/580/1/012042 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210195883 |
| best_oa_location.source.issn | 1755-1307, 1755-1315 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1755-1307 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IOP Conference Series Earth and Environmental Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IOP Conference Series: Earth and Environmental Science |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1755-1315/580/1/012042 |
| primary_location.id | doi:10.1088/1755-1315/580/1/012042 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210195883 |
| primary_location.source.issn | 1755-1307, 1755-1315 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1755-1307 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IOP Conference Series Earth and Environmental Science |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IOP Conference Series: Earth and Environmental Science |
| primary_location.landing_page_url | https://doi.org/10.1088/1755-1315/580/1/012042 |
| publication_date | 2020-10-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2144483161, https://openalex.org/W2982450503, https://openalex.org/W2794260266, https://openalex.org/W2996426179 |
| referenced_works_count | 4 |
| abstract_inverted_index.a | 8, 58, 120 |
| abstract_inverted_index.as | 32, 80 |
| abstract_inverted_index.in | 43 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 15, 63 |
| abstract_inverted_index.on | 57, 108 |
| abstract_inverted_index.to | 11, 47 |
| abstract_inverted_index.The | 1, 61 |
| abstract_inverted_index.and | 18, 35, 74, 84, 96, 115 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.dam | 3, 51, 103, 125 |
| abstract_inverted_index.for | 123 |
| abstract_inverted_index.has | 111 |
| abstract_inverted_index.key | 9 |
| abstract_inverted_index.new | 121 |
| abstract_inverted_index.the | 13, 20, 33, 37, 49, 68, 81, 91, 97, 101 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.deep | 28, 44, 59, 109 |
| abstract_inverted_index.map, | 70 |
| abstract_inverted_index.mean | 71 |
| abstract_inverted_index.more | 116 |
| abstract_inverted_index.safe | 21 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.used | 79 |
| abstract_inverted_index.uses | 26, 36 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.based | 56, 107 |
| abstract_inverted_index.error | 77 |
| abstract_inverted_index.model | 6, 55, 82, 95, 106 |
| abstract_inverted_index.paper | 25 |
| abstract_inverted_index.shows | 66 |
| abstract_inverted_index.error, | 73 |
| abstract_inverted_index.higher | 112 |
| abstract_inverted_index.mature | 38 |
| abstract_inverted_index.method | 122 |
| abstract_inverted_index.model, | 100 |
| abstract_inverted_index.neural | 40, 93 |
| abstract_inverted_index.safety | 53 |
| abstract_inverted_index.square | 72 |
| abstract_inverted_index.stable | 117 |
| abstract_inverted_index.theory | 46 |
| abstract_inverted_index.average | 75 |
| abstract_inverted_index.fitting | 83 |
| abstract_inverted_index.measure | 10 |
| abstract_inverted_index.network | 41, 94 |
| abstract_inverted_index.predict | 12 |
| abstract_inverted_index.service | 22 |
| abstract_inverted_index.shallow | 92 |
| abstract_inverted_index.status. | 23 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 89 |
| abstract_inverted_index.accuracy | 86, 114 |
| abstract_inverted_index.behavior | 17 |
| abstract_inverted_index.concrete | 2, 50, 102, 124 |
| abstract_inverted_index.evaluate | 19 |
| abstract_inverted_index.examples | 65 |
| abstract_inverted_index.learning | 29, 45, 110 |
| abstract_inverted_index.platform | 34 |
| abstract_inverted_index.residual | 69 |
| abstract_inverted_index.establish | 48 |
| abstract_inverted_index.evolution | 14 |
| abstract_inverted_index.framework | 30 |
| abstract_inverted_index.learning. | 60 |
| abstract_inverted_index.providing | 119 |
| abstract_inverted_index.TensorFlow | 31 |
| abstract_inverted_index.evaluation | 87 |
| abstract_inverted_index.percentage | 76 |
| abstract_inverted_index.prediction | 5, 54, 85, 105, 113 |
| abstract_inverted_index.standards. | 88 |
| abstract_inverted_index.structural | 16 |
| abstract_inverted_index.technology | 42 |
| abstract_inverted_index.Statistical | 99 |
| abstract_inverted_index.application | 62 |
| abstract_inverted_index.deformation | 4, 52, 104, 126 |
| abstract_inverted_index.engineering | 64 |
| abstract_inverted_index.monitoring. | 127 |
| abstract_inverted_index.open-source | 27 |
| abstract_inverted_index.traditional | 98 |
| abstract_inverted_index.performance, | 118 |
| abstract_inverted_index.convolutional | 39 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 93 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.94875479 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |