Deep Learning Neural Network Prediction System Enhanced with Best Window Size in Sliding Window Algorithm for Predicting Domestic Power Consumption in a Residential Building Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1155/2022/7216959
Buildings are considered to be one of the world’s largest consumers of energy. The productive utilization of energy will spare the accessible energy assets for the following ages. In this paper, we analyze and predict the domestic electric power consumption of a single residential building, implementing deep learning approach (LSTM and CNN). In these models, a novel feature is proposed, the “best N window size” that will focus on identifying the reliable time period in the past data, which yields an optimal prediction model for domestic energy consumption known as deep learning recurrent neural network prediction system with improved sliding window algorithm. The proposed prediction system is tuned to achieve high accuracy based on various hyperparameters. This work performs a comparative study of different variations of the deep learning model and records the best Root Mean Square Error value compared to other learning models for the benchmark energy consumption dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2022/7216959
- https://downloads.hindawi.com/journals/cin/2022/7216959.pdf
- OA Status
- hybrid
- Cited By
- 24
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214879862
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214879862Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2022/7216959Digital Object Identifier
- Title
-
Deep Learning Neural Network Prediction System Enhanced with Best Window Size in Sliding Window Algorithm for Predicting Domestic Power Consumption in a Residential BuildingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-02Full publication date if available
- Authors
-
Dimpal Tomar, Pradeep Tomar, Arpit Bhardwaj, G. R. SinhaList of authors in order
- Landing page
-
https://doi.org/10.1155/2022/7216959Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/cin/2022/7216959.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/cin/2022/7216959.pdfDirect OA link when available
- Concepts
-
Sliding window protocol, Window (computing), Computer science, Power consumption, Artificial neural network, Artificial intelligence, Consumption (sociology), Deep learning, Algorithm, Power (physics), Window of opportunity, Predictive power, Machine learning, Pattern recognition (psychology), Real-time computing, Operating system, Philosophy, Epistemology, Social science, Physics, Sociology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 8, 2023: 5, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214879862 |
|---|---|
| doi | https://doi.org/10.1155/2022/7216959 |
| ids.doi | https://doi.org/10.1155/2022/7216959 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35281200 |
| ids.openalex | https://openalex.org/W4214879862 |
| fwci | 2.58352129 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Deep Learning Neural Network Prediction System Enhanced with Best Window Size in Sliding Window Algorithm for Predicting Domestic Power Consumption in a Residential Building |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 14 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.982200026512146 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10121 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9807999730110168 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Building Energy and Comfort Optimization |
| topics[2].id | https://openalex.org/T12546 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9725000262260437 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Smart Parking Systems Research |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C102392041 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7903726696968079 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q592860 |
| concepts[0].display_name | Sliding window protocol |
| concepts[1].id | https://openalex.org/C2778751112 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7865241765975952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[1].display_name | Window (computing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6844403743743896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2984118289 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6451725363731384 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q29954 |
| concepts[3].display_name | Power consumption |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6435027718544006 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5086129903793335 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C30772137 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49703100323677063 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5164762 |
| concepts[6].display_name | Consumption (sociology) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4910114109516144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4751822054386139 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C163258240 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47469562292099 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[9].display_name | Power (physics) |
| concepts[10].id | https://openalex.org/C2778363899 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4277893304824829 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23900955 |
| concepts[10].display_name | Window of opportunity |
| concepts[11].id | https://openalex.org/C2778136018 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4147638976573944 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q10350689 |
| concepts[11].display_name | Predictive power |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4091053009033203 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.36384662985801697 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C79403827 |
| concepts[14].level | 1 |
| concepts[14].score | 0.33954888582229614 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[14].display_name | Real-time computing |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C111472728 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[17].display_name | Epistemology |
| concepts[18].id | https://openalex.org/C36289849 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[18].display_name | Social science |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C144024400 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[20].display_name | Sociology |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/sliding-window-protocol |
| keywords[0].score | 0.7903726696968079 |
| keywords[0].display_name | Sliding window protocol |
| keywords[1].id | https://openalex.org/keywords/window |
| keywords[1].score | 0.7865241765975952 |
| keywords[1].display_name | Window (computing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6844403743743896 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/power-consumption |
| keywords[3].score | 0.6451725363731384 |
| keywords[3].display_name | Power consumption |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6435027718544006 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5086129903793335 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/consumption |
| keywords[6].score | 0.49703100323677063 |
| keywords[6].display_name | Consumption (sociology) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4910114109516144 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4751822054386139 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/power |
| keywords[9].score | 0.47469562292099 |
| keywords[9].display_name | Power (physics) |
| keywords[10].id | https://openalex.org/keywords/window-of-opportunity |
| keywords[10].score | 0.4277893304824829 |
| keywords[10].display_name | Window of opportunity |
| keywords[11].id | https://openalex.org/keywords/predictive-power |
| keywords[11].score | 0.4147638976573944 |
| keywords[11].display_name | Predictive power |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.4091053009033203 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.36384662985801697 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/real-time-computing |
| keywords[14].score | 0.33954888582229614 |
| keywords[14].display_name | Real-time computing |
| language | en |
| locations[0].id | doi:10.1155/2022/7216959 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72372694 |
| locations[0].source.issn | 1687-5265, 1687-5273 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1687-5265 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational Intelligence and Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/cin/2022/7216959.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational Intelligence and Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1155/2022/7216959 |
| locations[1].id | pmid:35281200 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational intelligence and neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35281200 |
| locations[2].id | pmh:oai:doaj.org/article:c465de15c43c4b3f86e6cd7be27baf5f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Computational Intelligence and Neuroscience, Vol 2022 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/c465de15c43c4b3f86e6cd7be27baf5f |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8906985 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Comput Intell Neurosci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8906985 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5006402098 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9651-8637 |
| authorships[0].author.display_name | Dimpal Tomar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I72769676 |
| authorships[0].affiliations[0].raw_affiliation_string | Gautam Buddha University, Greater Noida, UP, India |
| authorships[0].institutions[0].id | https://openalex.org/I72769676 |
| authorships[0].institutions[0].ror | https://ror.org/026cfwd52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I72769676 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Gautam Buddha University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dimpal Tomar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Gautam Buddha University, Greater Noida, UP, India |
| authorships[1].author.id | https://openalex.org/A5004487291 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7565-0708 |
| authorships[1].author.display_name | Pradeep Tomar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I72769676 |
| authorships[1].affiliations[0].raw_affiliation_string | Gautam Buddha University, Greater Noida, UP, India |
| authorships[1].institutions[0].id | https://openalex.org/I72769676 |
| authorships[1].institutions[0].ror | https://ror.org/026cfwd52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I72769676 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Gautam Buddha University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pradeep Tomar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Gautam Buddha University, Greater Noida, UP, India |
| authorships[2].author.id | https://openalex.org/A5040631655 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0440-7313 |
| authorships[2].author.display_name | Arpit Bhardwaj |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1323093577 |
| authorships[2].affiliations[0].raw_affiliation_string | BML Munjal University, Gurugram, Haryana, India |
| authorships[2].institutions[0].id | https://openalex.org/I1323093577 |
| authorships[2].institutions[0].ror | https://ror.org/058ay3j75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1323093577 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | BML Munjal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Arpit Bhardwaj |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | BML Munjal University, Gurugram, Haryana, India |
| authorships[3].author.id | https://openalex.org/A5085796013 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2384-4591 |
| authorships[3].author.display_name | G. R. Sinha |
| authorships[3].countries | MM |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3132516330 |
| authorships[3].affiliations[0].raw_affiliation_string | MIIT Mandalay, Mandalay, Myanmar |
| authorships[3].institutions[0].id | https://openalex.org/I3132516330 |
| authorships[3].institutions[0].ror | https://ror.org/038smxt70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3132516330 |
| authorships[3].institutions[0].country_code | MM |
| authorships[3].institutions[0].display_name | Myanmar Institute of Information Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | G. R. Sinha |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | MIIT Mandalay, Mandalay, Myanmar |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/cin/2022/7216959.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Neural Network Prediction System Enhanced with Best Window Size in Sliding Window Algorithm for Predicting Domestic Power Consumption in a Residential Building |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.982200026512146 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2488277325, https://openalex.org/W2610434838, https://openalex.org/W2261249832, https://openalex.org/W3014558862, https://openalex.org/W4254985202, https://openalex.org/W1968833897, https://openalex.org/W3199179209, https://openalex.org/W2462598351, https://openalex.org/W3108948993, https://openalex.org/W2618416044 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1155/2022/7216959 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72372694 |
| best_oa_location.source.issn | 1687-5265, 1687-5273 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1687-5265 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational Intelligence and Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/cin/2022/7216959.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational Intelligence and Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2022/7216959 |
| primary_location.id | doi:10.1155/2022/7216959 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72372694 |
| primary_location.source.issn | 1687-5265, 1687-5273 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1687-5265 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational Intelligence and Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/cin/2022/7216959.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational Intelligence and Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1155/2022/7216959 |
| publication_date | 2022-03-02 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2048200986, https://openalex.org/W2268331518, https://openalex.org/W2754029504, https://openalex.org/W2777465902, https://openalex.org/W1977686954, https://openalex.org/W2757157619, https://openalex.org/W2064759762, https://openalex.org/W2046535743, https://openalex.org/W2148061495, https://openalex.org/W2051607409, https://openalex.org/W2560599441, https://openalex.org/W2948490758, https://openalex.org/W2763160469, https://openalex.org/W2769581371, https://openalex.org/W2913029471, https://openalex.org/W2970724283, https://openalex.org/W2982471419, https://openalex.org/W2889717020, https://openalex.org/W2991080871, https://openalex.org/W2793295527, https://openalex.org/W2009597393, https://openalex.org/W2575987583, https://openalex.org/W2062901109, https://openalex.org/W1982363472, https://openalex.org/W1620671204, https://openalex.org/W1991277158, https://openalex.org/W2000424045, https://openalex.org/W1998230236, https://openalex.org/W2281035007, https://openalex.org/W2129959438, https://openalex.org/W4248681815, https://openalex.org/W2033065921, https://openalex.org/W2130608062, https://openalex.org/W2543909292, https://openalex.org/W2605614336, https://openalex.org/W2781582701, https://openalex.org/W2081060955, https://openalex.org/W1668312308, https://openalex.org/W1963640815, https://openalex.org/W2255201377, https://openalex.org/W2592453717, https://openalex.org/W2936343203, https://openalex.org/W2321383747, https://openalex.org/W2329258917, https://openalex.org/W3010335229, https://openalex.org/W2940410650, https://openalex.org/W2899008775, https://openalex.org/W2767695914, https://openalex.org/W2543643230, https://openalex.org/W2295959395, https://openalex.org/W2618530766, https://openalex.org/W2996262564, https://openalex.org/W2524241275, https://openalex.org/W2117539524, https://openalex.org/W1984541135, https://openalex.org/W2912279212, https://openalex.org/W2710515985, https://openalex.org/W2064675550, https://openalex.org/W3134749995, https://openalex.org/W3104996215, https://openalex.org/W3099533866 |
| referenced_works_count | 61 |
| abstract_inverted_index.N | 62 |
| abstract_inverted_index.a | 41, 55, 119 |
| abstract_inverted_index.In | 28, 52 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.as | 89 |
| abstract_inverted_index.be | 4 |
| abstract_inverted_index.in | 74 |
| abstract_inverted_index.is | 58, 106 |
| abstract_inverted_index.of | 6, 11, 16, 40, 122, 125 |
| abstract_inverted_index.on | 68, 113 |
| abstract_inverted_index.to | 3, 108, 140 |
| abstract_inverted_index.we | 31 |
| abstract_inverted_index.The | 13, 102 |
| abstract_inverted_index.and | 33, 50, 130 |
| abstract_inverted_index.are | 1 |
| abstract_inverted_index.for | 24, 84, 144 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 7, 20, 25, 35, 60, 70, 75, 126, 132, 145 |
| abstract_inverted_index.Mean | 135 |
| abstract_inverted_index.Root | 134 |
| abstract_inverted_index.This | 116 |
| abstract_inverted_index.best | 133 |
| abstract_inverted_index.deep | 46, 90, 127 |
| abstract_inverted_index.high | 110 |
| abstract_inverted_index.past | 76 |
| abstract_inverted_index.that | 65 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.time | 72 |
| abstract_inverted_index.will | 18, 66 |
| abstract_inverted_index.with | 97 |
| abstract_inverted_index.work | 117 |
| abstract_inverted_index.(LSTM | 49 |
| abstract_inverted_index.CNN). | 51 |
| abstract_inverted_index.Error | 137 |
| abstract_inverted_index.ages. | 27 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.data, | 77 |
| abstract_inverted_index.focus | 67 |
| abstract_inverted_index.known | 88 |
| abstract_inverted_index.model | 83, 129 |
| abstract_inverted_index.novel | 56 |
| abstract_inverted_index.other | 141 |
| abstract_inverted_index.power | 38 |
| abstract_inverted_index.spare | 19 |
| abstract_inverted_index.study | 121 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.tuned | 107 |
| abstract_inverted_index.value | 138 |
| abstract_inverted_index.which | 78 |
| abstract_inverted_index.Square | 136 |
| abstract_inverted_index.assets | 23 |
| abstract_inverted_index.energy | 17, 22, 86, 147 |
| abstract_inverted_index.models | 143 |
| abstract_inverted_index.neural | 93 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.period | 73 |
| abstract_inverted_index.single | 42 |
| abstract_inverted_index.system | 96, 105 |
| abstract_inverted_index.window | 63, 100 |
| abstract_inverted_index.yields | 79 |
| abstract_inverted_index.achieve | 109 |
| abstract_inverted_index.analyze | 32 |
| abstract_inverted_index.energy. | 12 |
| abstract_inverted_index.feature | 57 |
| abstract_inverted_index.largest | 9 |
| abstract_inverted_index.models, | 54 |
| abstract_inverted_index.network | 94 |
| abstract_inverted_index.optimal | 81 |
| abstract_inverted_index.predict | 34 |
| abstract_inverted_index.records | 131 |
| abstract_inverted_index.size” | 64 |
| abstract_inverted_index.sliding | 99 |
| abstract_inverted_index.various | 114 |
| abstract_inverted_index.“best | 61 |
| abstract_inverted_index.accuracy | 111 |
| abstract_inverted_index.approach | 48 |
| abstract_inverted_index.compared | 139 |
| abstract_inverted_index.dataset. | 149 |
| abstract_inverted_index.domestic | 36, 85 |
| abstract_inverted_index.electric | 37 |
| abstract_inverted_index.improved | 98 |
| abstract_inverted_index.learning | 47, 91, 128, 142 |
| abstract_inverted_index.performs | 118 |
| abstract_inverted_index.proposed | 103 |
| abstract_inverted_index.reliable | 71 |
| abstract_inverted_index.Buildings | 0 |
| abstract_inverted_index.benchmark | 146 |
| abstract_inverted_index.building, | 44 |
| abstract_inverted_index.consumers | 10 |
| abstract_inverted_index.different | 123 |
| abstract_inverted_index.following | 26 |
| abstract_inverted_index.proposed, | 59 |
| abstract_inverted_index.recurrent | 92 |
| abstract_inverted_index.world’s | 8 |
| abstract_inverted_index.accessible | 21 |
| abstract_inverted_index.algorithm. | 101 |
| abstract_inverted_index.considered | 2 |
| abstract_inverted_index.prediction | 82, 95, 104 |
| abstract_inverted_index.productive | 14 |
| abstract_inverted_index.variations | 124 |
| abstract_inverted_index.comparative | 120 |
| abstract_inverted_index.consumption | 39, 87, 148 |
| abstract_inverted_index.identifying | 69 |
| abstract_inverted_index.residential | 43 |
| abstract_inverted_index.utilization | 15 |
| abstract_inverted_index.implementing | 45 |
| abstract_inverted_index.hyperparameters. | 115 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5085796013 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I3132516330 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.88722243 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |