Deep Learning of Causal Structures in High Dimensions Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.04866
Recent years have seen rapid progress at the intersection between causality and machine learning. Motivated by scientific applications involving high-dimensional data, in particular in biomedicine, we propose a deep neural architecture for learning causal relationships between variables from a combination of empirical data and prior causal knowledge. We combine convolutional and graph neural networks within a causal risk framework to provide a flexible and scalable approach. Empirical results include linear and nonlinear simulations (where the underlying causal structures are known and can be directly compared against), as well as a real biological example where the models are applied to high-dimensional molecular data and their output compared against entirely unseen validation experiments. These results demonstrate the feasibility of using deep learning approaches to learn causal networks in large-scale problems spanning thousands of variables.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.04866
- https://arxiv.org/pdf/2212.04866
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311251604
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311251604Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.04866Digital Object Identifier
- Title
-
Deep Learning of Causal Structures in High DimensionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-09Full publication date if available
- Authors
-
Kai Lagemann, Christian Lagemann, Bernd Taschler, Sach MukherjeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.04866Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.04866Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.04866Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Causality (physics), Deep learning, Machine learning, Causal model, Causal inference, Causal structure, Scalability, Biomedicine, Intersection (aeronautics), Convolutional neural network, Deep neural networks, Mathematics, Econometrics, Engineering, Biology, Physics, Statistics, Aerospace engineering, Database, Genetics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311251604 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.04866 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.04866 |
| ids.openalex | https://openalex.org/W4311251604 |
| fwci | |
| type | preprint |
| title | Deep Learning of Causal Structures in High Dimensions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9661999940872192 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9607999920845032 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T11948 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9017000198364258 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Machine Learning in Materials Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7137972116470337 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.70862877368927 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C64357122 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6613946557044983 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1149766 |
| concepts[2].display_name | Causality (physics) |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6598513722419739 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6121377944946289 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C11671645 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5602858066558838 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5054567 |
| concepts[5].display_name | Causal model |
| concepts[6].id | https://openalex.org/C158600405 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47903767228126526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[6].display_name | Causal inference |
| concepts[7].id | https://openalex.org/C163504300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4775981903076172 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2364925 |
| concepts[7].display_name | Causal structure |
| concepts[8].id | https://openalex.org/C48044578 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47580987215042114 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[8].display_name | Scalability |
| concepts[9].id | https://openalex.org/C66782513 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4591054916381836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q864601 |
| concepts[9].display_name | Biomedicine |
| concepts[10].id | https://openalex.org/C64543145 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4340890049934387 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q162942 |
| concepts[10].display_name | Intersection (aeronautics) |
| concepts[11].id | https://openalex.org/C81363708 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42154228687286377 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[11].display_name | Convolutional neural network |
| concepts[12].id | https://openalex.org/C2984842247 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4194735586643219 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep neural networks |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.13556921482086182 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12805619835853577 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07737588882446289 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C146978453 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[19].display_name | Aerospace engineering |
| concepts[20].id | https://openalex.org/C77088390 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[20].display_name | Database |
| concepts[21].id | https://openalex.org/C54355233 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[21].display_name | Genetics |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7137972116470337 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.70862877368927 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/causality |
| keywords[2].score | 0.6613946557044983 |
| keywords[2].display_name | Causality (physics) |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6598513722419739 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6121377944946289 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/causal-model |
| keywords[5].score | 0.5602858066558838 |
| keywords[5].display_name | Causal model |
| keywords[6].id | https://openalex.org/keywords/causal-inference |
| keywords[6].score | 0.47903767228126526 |
| keywords[6].display_name | Causal inference |
| keywords[7].id | https://openalex.org/keywords/causal-structure |
| keywords[7].score | 0.4775981903076172 |
| keywords[7].display_name | Causal structure |
| keywords[8].id | https://openalex.org/keywords/scalability |
| keywords[8].score | 0.47580987215042114 |
| keywords[8].display_name | Scalability |
| keywords[9].id | https://openalex.org/keywords/biomedicine |
| keywords[9].score | 0.4591054916381836 |
| keywords[9].display_name | Biomedicine |
| keywords[10].id | https://openalex.org/keywords/intersection |
| keywords[10].score | 0.4340890049934387 |
| keywords[10].display_name | Intersection (aeronautics) |
| keywords[11].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[11].score | 0.42154228687286377 |
| keywords[11].display_name | Convolutional neural network |
| keywords[12].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[12].score | 0.4194735586643219 |
| keywords[12].display_name | Deep neural networks |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.13556921482086182 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.12805619835853577 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.07737588882446289 |
| keywords[15].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.04866 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.04866 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.04866 |
| locations[1].id | doi:10.48550/arxiv.2212.04866 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.04866 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015971884 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8485-7682 |
| authorships[0].author.display_name | Kai Lagemann |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lagemann, Kai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085520597 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1150-4987 |
| authorships[1].author.display_name | Christian Lagemann |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lagemann, Christian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043209603 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6574-4789 |
| authorships[2].author.display_name | Bernd Taschler |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Taschler, Bernd |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5112866063 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sach Mukherjee |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mukherjee, Sach |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.04866 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning of Causal Structures in High Dimensions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9661999940872192 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W3215034539, https://openalex.org/W2161504683, https://openalex.org/W4386620154, https://openalex.org/W4389961576, https://openalex.org/W4294555408, https://openalex.org/W4372260129, https://openalex.org/W4378718308, https://openalex.org/W1153243621, https://openalex.org/W4299782962, https://openalex.org/W4386839885 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.04866 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.04866 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.04866 |
| primary_location.id | pmh:oai:arXiv.org:2212.04866 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.04866 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.04866 |
| publication_date | 2022-12-09 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 27, 38, 55, 61, 89 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.as | 86, 88 |
| abstract_inverted_index.at | 6 |
| abstract_inverted_index.be | 82 |
| abstract_inverted_index.by | 15 |
| abstract_inverted_index.in | 21, 23, 125 |
| abstract_inverted_index.of | 40, 116, 130 |
| abstract_inverted_index.to | 59, 98, 121 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.and | 11, 43, 50, 63, 70, 80, 102 |
| abstract_inverted_index.are | 78, 96 |
| abstract_inverted_index.can | 81 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.the | 7, 74, 94, 114 |
| abstract_inverted_index.data | 42, 101 |
| abstract_inverted_index.deep | 28, 118 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.real | 90 |
| abstract_inverted_index.risk | 57 |
| abstract_inverted_index.seen | 3 |
| abstract_inverted_index.well | 87 |
| abstract_inverted_index.These | 111 |
| abstract_inverted_index.data, | 20 |
| abstract_inverted_index.graph | 51 |
| abstract_inverted_index.known | 79 |
| abstract_inverted_index.learn | 122 |
| abstract_inverted_index.prior | 44 |
| abstract_inverted_index.rapid | 4 |
| abstract_inverted_index.their | 103 |
| abstract_inverted_index.using | 117 |
| abstract_inverted_index.where | 93 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.(where | 73 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.causal | 33, 45, 56, 76, 123 |
| abstract_inverted_index.linear | 69 |
| abstract_inverted_index.models | 95 |
| abstract_inverted_index.neural | 29, 52 |
| abstract_inverted_index.output | 104 |
| abstract_inverted_index.unseen | 108 |
| abstract_inverted_index.within | 54 |
| abstract_inverted_index.against | 106 |
| abstract_inverted_index.applied | 97 |
| abstract_inverted_index.between | 9, 35 |
| abstract_inverted_index.combine | 48 |
| abstract_inverted_index.example | 92 |
| abstract_inverted_index.include | 68 |
| abstract_inverted_index.machine | 12 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.provide | 60 |
| abstract_inverted_index.results | 67, 112 |
| abstract_inverted_index.compared | 84, 105 |
| abstract_inverted_index.directly | 83 |
| abstract_inverted_index.entirely | 107 |
| abstract_inverted_index.flexible | 62 |
| abstract_inverted_index.learning | 32, 119 |
| abstract_inverted_index.networks | 53, 124 |
| abstract_inverted_index.problems | 127 |
| abstract_inverted_index.progress | 5 |
| abstract_inverted_index.scalable | 64 |
| abstract_inverted_index.spanning | 128 |
| abstract_inverted_index.Empirical | 66 |
| abstract_inverted_index.Motivated | 14 |
| abstract_inverted_index.against), | 85 |
| abstract_inverted_index.approach. | 65 |
| abstract_inverted_index.causality | 10 |
| abstract_inverted_index.empirical | 41 |
| abstract_inverted_index.framework | 58 |
| abstract_inverted_index.involving | 18 |
| abstract_inverted_index.learning. | 13 |
| abstract_inverted_index.molecular | 100 |
| abstract_inverted_index.nonlinear | 71 |
| abstract_inverted_index.thousands | 129 |
| abstract_inverted_index.variables | 36 |
| abstract_inverted_index.approaches | 120 |
| abstract_inverted_index.biological | 91 |
| abstract_inverted_index.knowledge. | 46 |
| abstract_inverted_index.particular | 22 |
| abstract_inverted_index.scientific | 16 |
| abstract_inverted_index.structures | 77 |
| abstract_inverted_index.underlying | 75 |
| abstract_inverted_index.validation | 109 |
| abstract_inverted_index.variables. | 131 |
| abstract_inverted_index.combination | 39 |
| abstract_inverted_index.demonstrate | 113 |
| abstract_inverted_index.feasibility | 115 |
| abstract_inverted_index.large-scale | 126 |
| abstract_inverted_index.simulations | 72 |
| abstract_inverted_index.applications | 17 |
| abstract_inverted_index.architecture | 30 |
| abstract_inverted_index.biomedicine, | 24 |
| abstract_inverted_index.experiments. | 110 |
| abstract_inverted_index.intersection | 8 |
| abstract_inverted_index.convolutional | 49 |
| abstract_inverted_index.relationships | 34 |
| abstract_inverted_index.high-dimensional | 19, 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |