Deep learning of nanopore sensing signals using a bi-path network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2105.03660
Temporary changes in electrical resistance of a nanopore sensor caused by translocating target analytes are recorded as a sequence of pulses on current traces. Prevalent algorithms for feature extraction in pulse-like signals lack objectivity because empirical amplitude thresholds are user-defined to single out the pulses from the noisy background. Here, we use deep learning for feature extraction based on a bi-path network (B-Net). After training, the B-Net acquires the prototypical pulses and the ability of both pulse recognition and feature extraction without a priori assigned parameters. The B-Net performance is evaluated on generated datasets and further applied to experimental data of DNA and protein translocation. The B-Net results show remarkably small relative errors and stable trends. The B-Net is further shown capable of processing data with a signal-to-noise ratio equal to one, an impossibility for threshold-based algorithms. The developed B-Net is generic for pulse-like signals beyond pulsed nanopore currents.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2105.03660
- https://arxiv.org/pdf/2105.03660
- OA Status
- green
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3160901125
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3160901125Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2105.03660Digital Object Identifier
- Title
-
Deep learning of nanopore sensing signals using a bi-path networkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-08Full publication date if available
- Authors
-
Darío Demattíes, Chenyu Wen, Mauricio D. Pérez, Dian Zhou, Shi‐Li ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2105.03660Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2105.03660Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2105.03660Direct OA link when available
- Concepts
-
Nanopore, Computer science, Pulse (music), Feature extraction, Path (computing), Amplitude, Noise (video), Waveform, SIGNAL (programming language), Artificial intelligence, Pattern recognition (psychology), Algorithm, Radar, Physics, Materials science, Nanotechnology, Telecommunications, Detector, Computer network, Image (mathematics), Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3160901125 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2105.03660 |
| ids.doi | https://doi.org/10.48550/arxiv.2105.03660 |
| ids.mag | 3160901125 |
| ids.openalex | https://openalex.org/W3160901125 |
| fwci | |
| type | preprint |
| title | Deep learning of nanopore sensing signals using a bi-path network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11582 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Nanopore and Nanochannel Transport Studies |
| topics[1].id | https://openalex.org/T10572 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Geophysical and Geoelectrical Methods |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141795571 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6941781640052795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580942 |
| concepts[0].display_name | Nanopore |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5584469437599182 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780167933 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4885893762111664 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1550652 |
| concepts[2].display_name | Pulse (music) |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4806077182292938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C2777735758 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47467827796936035 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[4].display_name | Path (computing) |
| concepts[5].id | https://openalex.org/C180205008 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4695226550102234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[5].display_name | Amplitude |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4586049020290375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C197424946 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4582267701625824 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[7].display_name | Waveform |
| concepts[8].id | https://openalex.org/C2779843651 |
| concepts[8].level | 2 |
| concepts[8].score | 0.449504017829895 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[8].display_name | SIGNAL (programming language) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4436025619506836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.431302547454834 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3982553780078888 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C554190296 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2940247058868408 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[12].display_name | Radar |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20008650422096252 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.18911096453666687 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C171250308 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14316967129707336 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[15].display_name | Nanotechnology |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12724316120147705 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C94915269 |
| concepts[17].level | 2 |
| concepts[17].score | 0.11194682121276855 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[17].display_name | Detector |
| concepts[18].id | https://openalex.org/C31258907 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08831080794334412 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[18].display_name | Computer network |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/nanopore |
| keywords[0].score | 0.6941781640052795 |
| keywords[0].display_name | Nanopore |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5584469437599182 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pulse |
| keywords[2].score | 0.4885893762111664 |
| keywords[2].display_name | Pulse (music) |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.4806077182292938 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/path |
| keywords[4].score | 0.47467827796936035 |
| keywords[4].display_name | Path (computing) |
| keywords[5].id | https://openalex.org/keywords/amplitude |
| keywords[5].score | 0.4695226550102234 |
| keywords[5].display_name | Amplitude |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.4586049020290375 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/waveform |
| keywords[7].score | 0.4582267701625824 |
| keywords[7].display_name | Waveform |
| keywords[8].id | https://openalex.org/keywords/signal |
| keywords[8].score | 0.449504017829895 |
| keywords[8].display_name | SIGNAL (programming language) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4436025619506836 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.431302547454834 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3982553780078888 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/radar |
| keywords[12].score | 0.2940247058868408 |
| keywords[12].display_name | Radar |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.20008650422096252 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.18911096453666687 |
| keywords[14].display_name | Materials science |
| keywords[15].id | https://openalex.org/keywords/nanotechnology |
| keywords[15].score | 0.14316967129707336 |
| keywords[15].display_name | Nanotechnology |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.12724316120147705 |
| keywords[16].display_name | Telecommunications |
| keywords[17].id | https://openalex.org/keywords/detector |
| keywords[17].score | 0.11194682121276855 |
| keywords[17].display_name | Detector |
| keywords[18].id | https://openalex.org/keywords/computer-network |
| keywords[18].score | 0.08831080794334412 |
| keywords[18].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2105.03660 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2105.03660 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2105.03660 |
| locations[1].id | pmh:oai:figshare.com:article/15180879 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by-nc |
| locations[1].pdf_url | https://figshare.com/articles/journal_contribution/Deep_Learning_of_Nanopore_Sensing_Signals_Using_a_Bi-Path_Network/15180879 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | doi:10.48550/arxiv.2105.03660 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2105.03660 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5012083077 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8726-7837 |
| authorships[0].author.display_name | Darío Demattíes |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dario Dematties |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073461361 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4395-7905 |
| authorships[1].author.display_name | Chenyu Wen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenyu Wen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080804523 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4821-8087 |
| authorships[2].author.display_name | Mauricio D. Pérez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mauricio David Pérez |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5054960059 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2648-5232 |
| authorships[3].author.display_name | Dian Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dian Zhou |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5018025509 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2417-274X |
| authorships[4].author.display_name | Shi‐Li Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shi-Li Zhang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2105.03660 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning of nanopore sensing signals using a bi-path network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11582 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Nanopore and Nanochannel Transport Studies |
| related_works | https://openalex.org/W2055215578, https://openalex.org/W3097090396, https://openalex.org/W2734703372, https://openalex.org/W2267068863, https://openalex.org/W1989500433, https://openalex.org/W2924313437, https://openalex.org/W2328692626, https://openalex.org/W3141442004, https://openalex.org/W1986165536, https://openalex.org/W1984273593 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2105.03660 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2105.03660 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2105.03660 |
| primary_location.id | pmh:oai:arXiv.org:2105.03660 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2105.03660 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2105.03660 |
| publication_date | 2021-05-08 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2007684583, https://openalex.org/W2892075913, https://openalex.org/W3163498495, https://openalex.org/W2945711050, https://openalex.org/W3047373814, https://openalex.org/W2945903506, https://openalex.org/W2076063813, https://openalex.org/W3087029534, https://openalex.org/W2069600787, https://openalex.org/W2133372935, https://openalex.org/W2978953816, https://openalex.org/W2328788097, https://openalex.org/W2020877495, https://openalex.org/W2923844663, https://openalex.org/W2013027736, https://openalex.org/W2586103361, https://openalex.org/W3080838335, https://openalex.org/W2808961480, https://openalex.org/W2018822918, https://openalex.org/W2316903776, https://openalex.org/W2794569677, https://openalex.org/W2908261006, https://openalex.org/W2332407442, https://openalex.org/W2962946126, https://openalex.org/W2899485675, https://openalex.org/W2340126877, https://openalex.org/W2761237527, https://openalex.org/W2562252980, https://openalex.org/W2100085677, https://openalex.org/W2793389773, https://openalex.org/W2900024189, https://openalex.org/W2947827328, https://openalex.org/W2194775991, https://openalex.org/W2163922914, https://openalex.org/W2978535631, https://openalex.org/W2936223241 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 6, 17, 59, 82, 126 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 16 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 2, 29 |
| abstract_inverted_index.is | 89, 118, 140 |
| abstract_inverted_index.of | 5, 19, 74, 100, 122 |
| abstract_inverted_index.on | 21, 58, 91 |
| abstract_inverted_index.to | 40, 97, 130 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.DNA | 101 |
| abstract_inverted_index.The | 86, 105, 116, 137 |
| abstract_inverted_index.and | 71, 78, 94, 102, 113 |
| abstract_inverted_index.are | 14, 38 |
| abstract_inverted_index.for | 26, 54, 134, 142 |
| abstract_inverted_index.out | 42 |
| abstract_inverted_index.the | 43, 46, 65, 68, 72 |
| abstract_inverted_index.use | 51 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 99, 124 |
| abstract_inverted_index.deep | 52 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.one, | 131 |
| abstract_inverted_index.show | 108 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.After | 63 |
| abstract_inverted_index.B-Net | 66, 87, 106, 117, 139 |
| abstract_inverted_index.Here, | 49 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.equal | 129 |
| abstract_inverted_index.noisy | 47 |
| abstract_inverted_index.pulse | 76 |
| abstract_inverted_index.ratio | 128 |
| abstract_inverted_index.shown | 120 |
| abstract_inverted_index.small | 110 |
| abstract_inverted_index.beyond | 145 |
| abstract_inverted_index.caused | 9 |
| abstract_inverted_index.errors | 112 |
| abstract_inverted_index.priori | 83 |
| abstract_inverted_index.pulsed | 146 |
| abstract_inverted_index.pulses | 20, 44, 70 |
| abstract_inverted_index.sensor | 8 |
| abstract_inverted_index.single | 41 |
| abstract_inverted_index.stable | 114 |
| abstract_inverted_index.target | 12 |
| abstract_inverted_index.ability | 73 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.because | 34 |
| abstract_inverted_index.bi-path | 60 |
| abstract_inverted_index.capable | 121 |
| abstract_inverted_index.changes | 1 |
| abstract_inverted_index.current | 22 |
| abstract_inverted_index.feature | 27, 55, 79 |
| abstract_inverted_index.further | 95, 119 |
| abstract_inverted_index.generic | 141 |
| abstract_inverted_index.network | 61 |
| abstract_inverted_index.protein | 103 |
| abstract_inverted_index.results | 107 |
| abstract_inverted_index.signals | 31, 144 |
| abstract_inverted_index.traces. | 23 |
| abstract_inverted_index.trends. | 115 |
| abstract_inverted_index.without | 81 |
| abstract_inverted_index.(B-Net). | 62 |
| abstract_inverted_index.acquires | 67 |
| abstract_inverted_index.analytes | 13 |
| abstract_inverted_index.assigned | 84 |
| abstract_inverted_index.datasets | 93 |
| abstract_inverted_index.learning | 53 |
| abstract_inverted_index.nanopore | 7, 147 |
| abstract_inverted_index.recorded | 15 |
| abstract_inverted_index.relative | 111 |
| abstract_inverted_index.sequence | 18 |
| abstract_inverted_index.Prevalent | 24 |
| abstract_inverted_index.Temporary | 0 |
| abstract_inverted_index.amplitude | 36 |
| abstract_inverted_index.currents. | 148 |
| abstract_inverted_index.developed | 138 |
| abstract_inverted_index.empirical | 35 |
| abstract_inverted_index.evaluated | 90 |
| abstract_inverted_index.generated | 92 |
| abstract_inverted_index.training, | 64 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.electrical | 3 |
| abstract_inverted_index.extraction | 28, 56, 80 |
| abstract_inverted_index.processing | 123 |
| abstract_inverted_index.pulse-like | 30, 143 |
| abstract_inverted_index.remarkably | 109 |
| abstract_inverted_index.resistance | 4 |
| abstract_inverted_index.thresholds | 37 |
| abstract_inverted_index.algorithms. | 136 |
| abstract_inverted_index.background. | 48 |
| abstract_inverted_index.objectivity | 33 |
| abstract_inverted_index.parameters. | 85 |
| abstract_inverted_index.performance | 88 |
| abstract_inverted_index.recognition | 77 |
| abstract_inverted_index.experimental | 98 |
| abstract_inverted_index.prototypical | 69 |
| abstract_inverted_index.user-defined | 39 |
| abstract_inverted_index.impossibility | 133 |
| abstract_inverted_index.translocating | 11 |
| abstract_inverted_index.translocation. | 104 |
| abstract_inverted_index.signal-to-noise | 127 |
| abstract_inverted_index.threshold-based | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |