Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1021/acsnano.1c03842
Temporal changes in electrical resistance of a nanopore sensor caused by translocating target analytes are recorded as a sequence of pulses on current traces. Prevalent algorithms for feature extraction in pulse-like signals lack objectivity because empirical amplitude thresholds are user-defined to single out the pulses from the noisy background. Here, we use deep learning for feature extraction based on a bi-path network (B-Net). After training, the B-Net acquires the prototypical pulses and the ability of both pulse recognition and feature extraction without a priori assigned parameters. The B-Net is evaluated on simulated data sets and further applied to experimental data of DNA and protein translocation. The B-Net results are characterized by small relative errors and stable trends. The B-Net is further shown capable of processing data with a signal-to-noise ratio equal to 1, an impossibility for threshold-based algorithms. The B-Net presents a generic architecture applicable to pulse-like signals beyond nanopore currents.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acsnano.1c03842
- https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842
- OA Status
- hybrid
- Cited By
- 26
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3194491669
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3194491669Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acsnano.1c03842Digital Object Identifier
- Title
-
Deep Learning of Nanopore Sensing Signals Using a Bi-Path NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-17Full publication date if available
- Authors
-
Darío Demattíes, Chenyu Wen, Mauricio D. Pérez, Dian Zhou, Shi‐Li ZhangList of authors in order
- Landing page
-
https://doi.org/10.1021/acsnano.1c03842Publisher landing page
- PDF URL
-
https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842Direct OA link when available
- Concepts
-
Nanopore, Computer science, Artificial intelligence, Feature extraction, Noise (video), Path (computing), Pattern recognition (psychology), SIGNAL (programming language), Waveform, Pulse (music), Amplitude, Algorithm, Radar, Physics, Materials science, Nanotechnology, Telecommunications, Detector, Quantum mechanics, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 6, 2023: 3, 2022: 4, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3194491669 |
|---|---|
| doi | https://doi.org/10.1021/acsnano.1c03842 |
| ids.doi | https://doi.org/10.1021/acsnano.1c03842 |
| ids.mag | 3194491669 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34583465 |
| ids.openalex | https://openalex.org/W3194491669 |
| fwci | 1.29363216 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000077321 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Deep Learning |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D058608 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Nanopores |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000077321 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Deep Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D058608 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Nanopores |
| type | article |
| title | Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network |
| awards[0].id | https://openalex.org/G8453127603 |
| awards[0].funder_id | https://openalex.org/F4320322444 |
| awards[0].display_name | |
| awards[0].funder_award_id | 194-0646 |
| awards[0].funder_display_name | Stiftelsen Olle Engkvist Byggmästare |
| biblio.issue | 9 |
| biblio.volume | 15 |
| biblio.last_page | 14429 |
| biblio.first_page | 14419 |
| topics[0].id | https://openalex.org/T11582 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Nanopore and Nanochannel Transport Studies |
| topics[1].id | https://openalex.org/T10572 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9936000108718872 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Geophysical and Geoelectrical Methods |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| funders[0].id | https://openalex.org/F4320322444 |
| funders[0].ror | https://ror.org/05apbp152 |
| funders[0].display_name | Stiftelsen Olle Engkvist Byggmästare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C141795571 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6651221513748169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q580942 |
| concepts[0].display_name | Nanopore |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5905571579933167 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.47875159978866577 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46035879850387573 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4595848619937897 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4556189179420471 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4522857367992401 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2779843651 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44790905714035034 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[7].display_name | SIGNAL (programming language) |
| concepts[8].id | https://openalex.org/C197424946 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44244006276130676 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[8].display_name | Waveform |
| concepts[9].id | https://openalex.org/C2780167933 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4414641857147217 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1550652 |
| concepts[9].display_name | Pulse (music) |
| concepts[10].id | https://openalex.org/C180205008 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4298591613769531 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[10].display_name | Amplitude |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3768627345561981 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C554190296 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3070988357067108 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[12].display_name | Radar |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20327535271644592 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C192562407 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1906280517578125 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[14].display_name | Materials science |
| concepts[15].id | https://openalex.org/C171250308 |
| concepts[15].level | 1 |
| concepts[15].score | 0.16002172231674194 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[15].display_name | Nanotechnology |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.14062008261680603 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C94915269 |
| concepts[17].level | 2 |
| concepts[17].score | 0.11456754803657532 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[17].display_name | Detector |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/nanopore |
| keywords[0].score | 0.6651221513748169 |
| keywords[0].display_name | Nanopore |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5905571579933167 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.47875159978866577 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.46035879850387573 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.4595848619937897 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.4556189179420471 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4522857367992401 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/signal |
| keywords[7].score | 0.44790905714035034 |
| keywords[7].display_name | SIGNAL (programming language) |
| keywords[8].id | https://openalex.org/keywords/waveform |
| keywords[8].score | 0.44244006276130676 |
| keywords[8].display_name | Waveform |
| keywords[9].id | https://openalex.org/keywords/pulse |
| keywords[9].score | 0.4414641857147217 |
| keywords[9].display_name | Pulse (music) |
| keywords[10].id | https://openalex.org/keywords/amplitude |
| keywords[10].score | 0.4298591613769531 |
| keywords[10].display_name | Amplitude |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3768627345561981 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/radar |
| keywords[12].score | 0.3070988357067108 |
| keywords[12].display_name | Radar |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.20327535271644592 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/materials-science |
| keywords[14].score | 0.1906280517578125 |
| keywords[14].display_name | Materials science |
| keywords[15].id | https://openalex.org/keywords/nanotechnology |
| keywords[15].score | 0.16002172231674194 |
| keywords[15].display_name | Nanotechnology |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.14062008261680603 |
| keywords[16].display_name | Telecommunications |
| keywords[17].id | https://openalex.org/keywords/detector |
| keywords[17].score | 0.11456754803657532 |
| keywords[17].display_name | Detector |
| language | en |
| locations[0].id | doi:10.1021/acsnano.1c03842 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S145476921 |
| locations[0].source.issn | 1936-0851, 1936-086X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1936-0851 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACS Nano |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACS Nano |
| locations[0].landing_page_url | https://doi.org/10.1021/acsnano.1c03842 |
| locations[1].id | pmid:34583465 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ACS nano |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34583465 |
| locations[2].id | pmh:oai:DiVA.org:uu-457566 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400013 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Publications (Konstfack University of Arts, Crafts, and Design) |
| locations[2].source.host_organization | https://openalex.org/I218177685 |
| locations[2].source.host_organization_name | University College of Arts Crafts and Design |
| locations[2].source.host_organization_lineage | https://openalex.org/I218177685 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-457566 |
| locations[3].id | pmh:oai:europepmc.org:7378379 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://europepmc.org/pmc/articles/PMC8482760 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8482760 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | ACS Nano |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8482760 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5012083077 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8726-7837 |
| authorships[0].author.display_name | Darío Demattíes |
| authorships[0].countries | AR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210152303 |
| authorships[0].affiliations[0].raw_affiliation_string | Instituto de Ciencias Humanas, Sociales y Ambientales CONICET Mendoza Technological Scientific Center, Mendoza M5500, Argentina |
| authorships[0].institutions[0].id | https://openalex.org/I4210152303 |
| authorships[0].institutions[0].ror | https://ror.org/055wmc747 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I151201029, https://openalex.org/I4210123736, https://openalex.org/I4210152303, https://openalex.org/I4387155568 |
| authorships[0].institutions[0].country_code | AR |
| authorships[0].institutions[0].display_name | Centro Científico Tecnológico - Mendoza |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dario Dematties |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Instituto de Ciencias Humanas, Sociales y Ambientales CONICET Mendoza Technological Scientific Center, Mendoza M5500, Argentina |
| authorships[1].author.id | https://openalex.org/A5073461361 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4395-7905 |
| authorships[1].author.display_name | Chenyu Wen |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I123387679 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[1].institutions[0].id | https://openalex.org/I123387679 |
| authorships[1].institutions[0].ror | https://ror.org/048a87296 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I123387679 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Uppsala University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chenyu Wen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[2].author.id | https://openalex.org/A5080804523 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4821-8087 |
| authorships[2].author.display_name | Mauricio D. Pérez |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I123387679 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I123387679 |
| authorships[2].institutions[0].ror | https://ror.org/048a87296 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I123387679 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Uppsala University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mauricio David Pérez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[3].author.id | https://openalex.org/A5054960059 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2648-5232 |
| authorships[3].author.display_name | Dian Zhou |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States |
| authorships[3].institutions[0].id | https://openalex.org/I162577319 |
| authorships[3].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas at Dallas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dian Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States |
| authorships[4].author.id | https://openalex.org/A5018025509 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2417-274X |
| authorships[4].author.display_name | Shi‐Li Zhang |
| authorships[4].countries | SE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I123387679 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| authorships[4].institutions[0].id | https://openalex.org/I123387679 |
| authorships[4].institutions[0].ror | https://ror.org/048a87296 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I123387679 |
| authorships[4].institutions[0].country_code | SE |
| authorships[4].institutions[0].display_name | Uppsala University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shi-Li Zhang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, SE-751 03 Uppsala, Sweden |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11582 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Nanopore and Nanochannel Transport Studies |
| related_works | https://openalex.org/W2055215578, https://openalex.org/W3097090396, https://openalex.org/W2734703372, https://openalex.org/W2267068863, https://openalex.org/W1989500433, https://openalex.org/W2924313437, https://openalex.org/W2328692626, https://openalex.org/W3141442004, https://openalex.org/W2078561390, https://openalex.org/W1984273593 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1021/acsnano.1c03842 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S145476921 |
| best_oa_location.source.issn | 1936-0851, 1936-086X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1936-0851 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACS Nano |
| best_oa_location.source.host_organization | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_name | American Chemical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| best_oa_location.source.host_organization_lineage_names | American Chemical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACS Nano |
| best_oa_location.landing_page_url | https://doi.org/10.1021/acsnano.1c03842 |
| primary_location.id | doi:10.1021/acsnano.1c03842 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S145476921 |
| primary_location.source.issn | 1936-0851, 1936-086X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1936-0851 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACS Nano |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c03842 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACS Nano |
| primary_location.landing_page_url | https://doi.org/10.1021/acsnano.1c03842 |
| publication_date | 2021-08-17 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2007772656, https://openalex.org/W2562252980, https://openalex.org/W2775403624, https://openalex.org/W2332407442, https://openalex.org/W3047373814, https://openalex.org/W2936223241, https://openalex.org/W2133372935, https://openalex.org/W2137018822, https://openalex.org/W2316903776, https://openalex.org/W2978535631, https://openalex.org/W2588911568, https://openalex.org/W2750301853, https://openalex.org/W2794569677, https://openalex.org/W2947049608, https://openalex.org/W3124014614, https://openalex.org/W2618530766, https://openalex.org/W3015494572, https://openalex.org/W6819060087, https://openalex.org/W6931287531, https://openalex.org/W2761237527, https://openalex.org/W3128065865, https://openalex.org/W2586103361, https://openalex.org/W1997647778, https://openalex.org/W2325842825, https://openalex.org/W2059648430, https://openalex.org/W2031045367, https://openalex.org/W2088905196, https://openalex.org/W2327033711, https://openalex.org/W2018822918, https://openalex.org/W2024366778, https://openalex.org/W6600466347, https://openalex.org/W2899485675, https://openalex.org/W2340126877, https://openalex.org/W2100085677, https://openalex.org/W2081452585, https://openalex.org/W2395953623, https://openalex.org/W2063831714, https://openalex.org/W2113564335, https://openalex.org/W4393696327, https://openalex.org/W2918521312 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 6, 17, 59, 127, 141 |
| abstract_inverted_index.1, | 132 |
| abstract_inverted_index.an | 133 |
| abstract_inverted_index.as | 16 |
| abstract_inverted_index.by | 10, 110 |
| abstract_inverted_index.in | 2, 29 |
| abstract_inverted_index.is | 88, 119 |
| abstract_inverted_index.of | 5, 19, 74, 100, 123 |
| abstract_inverted_index.on | 21, 58, 90 |
| abstract_inverted_index.to | 40, 97, 131, 145 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.DNA | 101 |
| abstract_inverted_index.The | 86, 105, 117, 138 |
| abstract_inverted_index.and | 71, 78, 94, 102, 114 |
| abstract_inverted_index.are | 14, 38, 108 |
| abstract_inverted_index.for | 26, 54, 135 |
| abstract_inverted_index.out | 42 |
| abstract_inverted_index.the | 43, 46, 65, 68, 72 |
| abstract_inverted_index.use | 51 |
| abstract_inverted_index.<i>a | 82 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 92, 99, 125 |
| abstract_inverted_index.deep | 52 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.lack | 32 |
| abstract_inverted_index.sets | 93 |
| abstract_inverted_index.with | 126 |
| abstract_inverted_index.After | 63 |
| abstract_inverted_index.B-Net | 66, 87, 106, 118, 139 |
| abstract_inverted_index.Here, | 49 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.equal | 130 |
| abstract_inverted_index.noisy | 47 |
| abstract_inverted_index.pulse | 76 |
| abstract_inverted_index.ratio | 129 |
| abstract_inverted_index.shown | 121 |
| abstract_inverted_index.small | 111 |
| abstract_inverted_index.beyond | 148 |
| abstract_inverted_index.caused | 9 |
| abstract_inverted_index.errors | 113 |
| abstract_inverted_index.pulses | 20, 44, 70 |
| abstract_inverted_index.sensor | 8 |
| abstract_inverted_index.single | 41 |
| abstract_inverted_index.stable | 115 |
| abstract_inverted_index.target | 12 |
| abstract_inverted_index.ability | 73 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.because | 34 |
| abstract_inverted_index.bi-path | 60 |
| abstract_inverted_index.capable | 122 |
| abstract_inverted_index.changes | 1 |
| abstract_inverted_index.current | 22 |
| abstract_inverted_index.feature | 27, 55, 79 |
| abstract_inverted_index.further | 95, 120 |
| abstract_inverted_index.generic | 142 |
| abstract_inverted_index.network | 61 |
| abstract_inverted_index.protein | 103 |
| abstract_inverted_index.results | 107 |
| abstract_inverted_index.signals | 31, 147 |
| abstract_inverted_index.traces. | 23 |
| abstract_inverted_index.trends. | 116 |
| abstract_inverted_index.without | 81 |
| abstract_inverted_index.(B-Net). | 62 |
| abstract_inverted_index.Temporal | 0 |
| abstract_inverted_index.acquires | 67 |
| abstract_inverted_index.analytes | 13 |
| abstract_inverted_index.assigned | 84 |
| abstract_inverted_index.learning | 53 |
| abstract_inverted_index.nanopore | 7, 149 |
| abstract_inverted_index.presents | 140 |
| abstract_inverted_index.recorded | 15 |
| abstract_inverted_index.relative | 112 |
| abstract_inverted_index.sequence | 18 |
| abstract_inverted_index.Prevalent | 24 |
| abstract_inverted_index.amplitude | 36 |
| abstract_inverted_index.currents. | 150 |
| abstract_inverted_index.empirical | 35 |
| abstract_inverted_index.evaluated | 89 |
| abstract_inverted_index.simulated | 91 |
| abstract_inverted_index.training, | 64 |
| abstract_inverted_index.algorithms | 25 |
| abstract_inverted_index.applicable | 144 |
| abstract_inverted_index.electrical | 3 |
| abstract_inverted_index.extraction | 28, 56, 80 |
| abstract_inverted_index.priori</i> | 83 |
| abstract_inverted_index.processing | 124 |
| abstract_inverted_index.pulse-like | 30, 146 |
| abstract_inverted_index.resistance | 4 |
| abstract_inverted_index.thresholds | 37 |
| abstract_inverted_index.algorithms. | 137 |
| abstract_inverted_index.background. | 48 |
| abstract_inverted_index.objectivity | 33 |
| abstract_inverted_index.parameters. | 85 |
| abstract_inverted_index.recognition | 77 |
| abstract_inverted_index.architecture | 143 |
| abstract_inverted_index.experimental | 98 |
| abstract_inverted_index.prototypical | 69 |
| abstract_inverted_index.user-defined | 39 |
| abstract_inverted_index.characterized | 109 |
| abstract_inverted_index.impossibility | 134 |
| abstract_inverted_index.translocating | 11 |
| abstract_inverted_index.translocation. | 104 |
| abstract_inverted_index.signal-to-noise | 128 |
| abstract_inverted_index.threshold-based | 136 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5018025509 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I123387679 |
| citation_normalized_percentile.value | 0.76699434 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |