Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.isci.2023.106527
Chronic rhinosinusitis (CRS) is characterized by poor prognosis and propensity for recurrence even after surgery. Identification of those CRS patients with high risk of relapse preoperatively will contribute to personalized treatment recommendations. In this paper, we proposed a multi-task deep learning network for sinus segmentation and CRS recurrence prediction simultaneously to develop and validate a deep learning radiomics-based nomogram for preoperatively predicting recurrence in CRS patients who needed surgical treatment. 265 paranasal sinuses computed tomography (CT) images of CRS from two independent medical centers were analyzed to build and test models. The sinus segmentation model achieved good segmentation results. Furthermore, the nomogram combining a deep learning signature and clinical factors also showed excellent recurrence prediction ability for CRS. Our study not only facilitates a technique for sinus segmentation but also provides a noninvasive method for preoperatively predicting recurrence in patients with CRS.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.isci.2023.106527
- OA Status
- gold
- Cited By
- 14
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361264070
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361264070Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.isci.2023.106527Digital Object Identifier
- Title
-
Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-30Full publication date if available
- Authors
-
Shaojuan He, Wei Chen, Xuehai Wang, Xinyu Xie, Fangying Liu, Xinyi Ma, Xuezhong Li, Anning Li, Xin FengList of authors in order
- Landing page
-
https://doi.org/10.1016/j.isci.2023.106527Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.isci.2023.106527Direct OA link when available
- Concepts
-
Nomogram, Medicine, Radiomics, Endoscopic sinus surgery, Segmentation, Deep learning, Radiology, Sinus (botany), Artificial intelligence, Surgery, Internal medicine, Computer science, Botany, Biology, GenusTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 5, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361264070 |
|---|---|
| doi | https://doi.org/10.1016/j.isci.2023.106527 |
| ids.doi | https://doi.org/10.1016/j.isci.2023.106527 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37123223 |
| ids.openalex | https://openalex.org/W4361264070 |
| fwci | 6.4710034 |
| type | article |
| title | Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis |
| biblio.issue | 4 |
| biblio.volume | 26 |
| biblio.last_page | 106527 |
| biblio.first_page | 106527 |
| topics[0].id | https://openalex.org/T10984 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2733 |
| topics[0].subfield.display_name | Otorhinolaryngology |
| topics[0].display_name | Sinusitis and nasal conditions |
| topics[1].id | https://openalex.org/T11669 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Head and Neck Surgical Oncology |
| topics[2].id | https://openalex.org/T11787 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9765999913215637 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3504 |
| topics[2].subfield.display_name | Oral Surgery |
| topics[2].display_name | Oral and Maxillofacial Pathology |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C34626388 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7626748085021973 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q721129 |
| concepts[0].display_name | Nomogram |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7282119989395142 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C2778559731 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5734124779701233 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[2].display_name | Radiomics |
| concepts[3].id | https://openalex.org/C2993524501 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5660344362258911 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17163425 |
| concepts[3].display_name | Endoscopic sinus surgery |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5615522265434265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5574594736099243 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C126838900 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49504485726356506 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[6].display_name | Radiology |
| concepts[7].id | https://openalex.org/C2776407911 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4544225037097931 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7525187 |
| concepts[7].display_name | Sinus (botany) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2703351676464081 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C141071460 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2616565227508545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[9].display_name | Surgery |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2118254005908966 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15188366174697876 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C157369684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q34740 |
| concepts[14].display_name | Genus |
| keywords[0].id | https://openalex.org/keywords/nomogram |
| keywords[0].score | 0.7626748085021973 |
| keywords[0].display_name | Nomogram |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.7282119989395142 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/radiomics |
| keywords[2].score | 0.5734124779701233 |
| keywords[2].display_name | Radiomics |
| keywords[3].id | https://openalex.org/keywords/endoscopic-sinus-surgery |
| keywords[3].score | 0.5660344362258911 |
| keywords[3].display_name | Endoscopic sinus surgery |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5615522265434265 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5574594736099243 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/radiology |
| keywords[6].score | 0.49504485726356506 |
| keywords[6].display_name | Radiology |
| keywords[7].id | https://openalex.org/keywords/sinus |
| keywords[7].score | 0.4544225037097931 |
| keywords[7].display_name | Sinus (botany) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2703351676464081 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/surgery |
| keywords[9].score | 0.2616565227508545 |
| keywords[9].display_name | Surgery |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.2118254005908966 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.15188366174697876 |
| keywords[11].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1016/j.isci.2023.106527 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898358376 |
| locations[0].source.issn | 2589-0042 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2589-0042 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | iScience |
| locations[0].source.host_organization | https://openalex.org/P4310315673 |
| locations[0].source.host_organization_name | Cell Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Cell Press, Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | iScience |
| locations[0].landing_page_url | https://doi.org/10.1016/j.isci.2023.106527 |
| locations[1].id | pmid:37123223 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | iScience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37123223 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10139989 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10139989/pdf/main.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | iScience |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10139989 |
| locations[3].id | pmh:oai:doaj.org/article:bcd1ddbe8a44496191a1a80e08142e83 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | iScience, Vol 26, Iss 4, Pp 106527- (2023) |
| locations[3].landing_page_url | https://doaj.org/article/bcd1ddbe8a44496191a1a80e08142e83 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5000759859 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shaojuan He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210161528 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Radiology, Qilu Hospital of Shandong University, Jinan, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[0].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shaojuan He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China, Department of Radiology, Qilu Hospital of Shandong University, Jinan, China |
| authorships[1].author.id | https://openalex.org/A5037569424 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2417-1299 |
| authorships[1].author.display_name | Wei Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[1].affiliations[0].raw_affiliation_string | School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China |
| authorships[1].institutions[0].id | https://openalex.org/I154099455 |
| authorships[1].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China |
| authorships[2].author.id | https://openalex.org/A5029271491 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1406-1846 |
| authorships[2].author.display_name | Xuehai Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210123583 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Weihai Municipal Hospital, Weihai, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210123583 |
| authorships[2].institutions[0].ror | https://ror.org/03vpa9q11 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210123583 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Weihai Municipal Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xuehai Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Otorhinolaryngology, Weihai Municipal Hospital, Weihai, China |
| authorships[3].author.id | https://openalex.org/A5027240611 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5039-3349 |
| authorships[3].author.display_name | Xinyu Xie |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[3].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xinyu Xie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[4].author.id | https://openalex.org/A5022978772 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fangying Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[4].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fangying Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[5].author.id | https://openalex.org/A5115596498 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xinyi Ma |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[5].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xinyi Ma |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[6].author.id | https://openalex.org/A5102710154 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3062-137X |
| authorships[6].author.display_name | Xuezhong Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[6].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xuezhong Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[7].author.id | https://openalex.org/A5018230988 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7695-161X |
| authorships[7].author.display_name | Anning Li |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Radiology, Qilu Hospital of Shandong University, Jinan, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[7].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Anning Li |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Radiology, Qilu Hospital of Shandong University, Jinan, China |
| authorships[8].author.id | https://openalex.org/A5018319943 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8089-4005 |
| authorships[8].author.display_name | Xin Feng |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210161528 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210161528 |
| authorships[8].institutions[0].ror | https://ror.org/056ef9489 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210161528 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Qilu Hospital of Shandong University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Xin Feng |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.isci.2023.106527 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10984 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2733 |
| primary_topic.subfield.display_name | Otorhinolaryngology |
| primary_topic.display_name | Sinusitis and nasal conditions |
| related_works | https://openalex.org/W2911441101, https://openalex.org/W1970018641, https://openalex.org/W4401571659, https://openalex.org/W2886637603, https://openalex.org/W4283707141, https://openalex.org/W2355988666, https://openalex.org/W2385113694, https://openalex.org/W2362904784, https://openalex.org/W2379360991, https://openalex.org/W2378419187 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.isci.2023.106527 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898358376 |
| best_oa_location.source.issn | 2589-0042 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2589-0042 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | iScience |
| best_oa_location.source.host_organization | https://openalex.org/P4310315673 |
| best_oa_location.source.host_organization_name | Cell Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Cell Press, Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | iScience |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.isci.2023.106527 |
| primary_location.id | doi:10.1016/j.isci.2023.106527 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898358376 |
| primary_location.source.issn | 2589-0042 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2589-0042 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | iScience |
| primary_location.source.host_organization | https://openalex.org/P4310315673 |
| primary_location.source.host_organization_name | Cell Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Cell Press, Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | iScience |
| primary_location.landing_page_url | https://doi.org/10.1016/j.isci.2023.106527 |
| publication_date | 2023-03-30 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3009076370, https://openalex.org/W6697573892, https://openalex.org/W2095669278, https://openalex.org/W2143274250, https://openalex.org/W2013478501, https://openalex.org/W3006104185, https://openalex.org/W2888519878, https://openalex.org/W2947263797, https://openalex.org/W3014974815, https://openalex.org/W4205868820, https://openalex.org/W3106904274, https://openalex.org/W4291884918, https://openalex.org/W4283015024, https://openalex.org/W2802611745, https://openalex.org/W2554368353, https://openalex.org/W2968175681, https://openalex.org/W6759247337, https://openalex.org/W1762605472, https://openalex.org/W2955164761, https://openalex.org/W3156296020, https://openalex.org/W6839666119, https://openalex.org/W3017372582, https://openalex.org/W4297065619, https://openalex.org/W2885642017, https://openalex.org/W1800644796, https://openalex.org/W2751538714, https://openalex.org/W2919115771, https://openalex.org/W6636270065, https://openalex.org/W2318272233, https://openalex.org/W2157102252, https://openalex.org/W2084775137, https://openalex.org/W2071608573, https://openalex.org/W2955808812, https://openalex.org/W2901606332, https://openalex.org/W3000472084, https://openalex.org/W3089389542, https://openalex.org/W4282938543, https://openalex.org/W2142554389, https://openalex.org/W2464708700, https://openalex.org/W6771608404, https://openalex.org/W2957375049, https://openalex.org/W3124202658, https://openalex.org/W2153505392, https://openalex.org/W2903051249, https://openalex.org/W2007463346, https://openalex.org/W2035781406, https://openalex.org/W2045030989, https://openalex.org/W3106266685, https://openalex.org/W4283370754, https://openalex.org/W2993259418, https://openalex.org/W2623357374, https://openalex.org/W2295678160, https://openalex.org/W1606887512, https://openalex.org/W3112701542, https://openalex.org/W2915134987, https://openalex.org/W4226385270 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 37, 54, 103, 123, 131 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.by | 5 |
| abstract_inverted_index.in | 63, 138 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 16, 23, 77 |
| abstract_inverted_index.to | 28, 50, 86 |
| abstract_inverted_index.we | 35 |
| abstract_inverted_index.265 | 70 |
| abstract_inverted_index.CRS | 18, 46, 64, 78 |
| abstract_inverted_index.Our | 118 |
| abstract_inverted_index.The | 91 |
| abstract_inverted_index.and | 8, 45, 52, 88, 107 |
| abstract_inverted_index.but | 128 |
| abstract_inverted_index.for | 10, 42, 59, 116, 125, 134 |
| abstract_inverted_index.not | 120 |
| abstract_inverted_index.the | 100 |
| abstract_inverted_index.two | 80 |
| abstract_inverted_index.who | 66 |
| abstract_inverted_index.(CT) | 75 |
| abstract_inverted_index.CRS. | 117, 141 |
| abstract_inverted_index.also | 110, 129 |
| abstract_inverted_index.deep | 39, 55, 104 |
| abstract_inverted_index.even | 12 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.good | 96 |
| abstract_inverted_index.high | 21 |
| abstract_inverted_index.only | 121 |
| abstract_inverted_index.poor | 6 |
| abstract_inverted_index.risk | 22 |
| abstract_inverted_index.test | 89 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.were | 84 |
| abstract_inverted_index.will | 26 |
| abstract_inverted_index.with | 20, 140 |
| abstract_inverted_index.(CRS) | 2 |
| abstract_inverted_index.after | 13 |
| abstract_inverted_index.build | 87 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.sinus | 43, 92, 126 |
| abstract_inverted_index.study | 119 |
| abstract_inverted_index.those | 17 |
| abstract_inverted_index.images | 76 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.needed | 67 |
| abstract_inverted_index.paper, | 34 |
| abstract_inverted_index.showed | 111 |
| abstract_inverted_index.Chronic | 0 |
| abstract_inverted_index.ability | 115 |
| abstract_inverted_index.centers | 83 |
| abstract_inverted_index.develop | 51 |
| abstract_inverted_index.factors | 109 |
| abstract_inverted_index.medical | 82 |
| abstract_inverted_index.models. | 90 |
| abstract_inverted_index.network | 41 |
| abstract_inverted_index.relapse | 24 |
| abstract_inverted_index.sinuses | 72 |
| abstract_inverted_index.achieved | 95 |
| abstract_inverted_index.analyzed | 85 |
| abstract_inverted_index.clinical | 108 |
| abstract_inverted_index.computed | 73 |
| abstract_inverted_index.learning | 40, 56, 105 |
| abstract_inverted_index.nomogram | 58, 101 |
| abstract_inverted_index.patients | 19, 65, 139 |
| abstract_inverted_index.proposed | 36 |
| abstract_inverted_index.provides | 130 |
| abstract_inverted_index.results. | 98 |
| abstract_inverted_index.surgery. | 14 |
| abstract_inverted_index.surgical | 68 |
| abstract_inverted_index.validate | 53 |
| abstract_inverted_index.combining | 102 |
| abstract_inverted_index.excellent | 112 |
| abstract_inverted_index.paranasal | 71 |
| abstract_inverted_index.prognosis | 7 |
| abstract_inverted_index.signature | 106 |
| abstract_inverted_index.technique | 124 |
| abstract_inverted_index.treatment | 30 |
| abstract_inverted_index.contribute | 27 |
| abstract_inverted_index.multi-task | 38 |
| abstract_inverted_index.predicting | 61, 136 |
| abstract_inverted_index.prediction | 48, 114 |
| abstract_inverted_index.propensity | 9 |
| abstract_inverted_index.recurrence | 11, 47, 62, 113, 137 |
| abstract_inverted_index.tomography | 74 |
| abstract_inverted_index.treatment. | 69 |
| abstract_inverted_index.facilitates | 122 |
| abstract_inverted_index.independent | 81 |
| abstract_inverted_index.noninvasive | 132 |
| abstract_inverted_index.Furthermore, | 99 |
| abstract_inverted_index.personalized | 29 |
| abstract_inverted_index.segmentation | 44, 93, 97, 127 |
| abstract_inverted_index.characterized | 4 |
| abstract_inverted_index.Identification | 15 |
| abstract_inverted_index.preoperatively | 25, 60, 135 |
| abstract_inverted_index.rhinosinusitis | 1 |
| abstract_inverted_index.simultaneously | 49 |
| abstract_inverted_index.radiomics-based | 57 |
| abstract_inverted_index.recommendations. | 31 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5018319943, https://openalex.org/A5018230988 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I4210161528 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.96196797 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |