Deep Learning-Ready Voxel Representation of Protein-Ligand Complexes from an Enhanced PBDbind v.2020 Dataset Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.26434/chemrxiv-2023-f4q6k
A critical aspect of successful deep learning (DL) modelling in computer-aided drug discovery (CADD) is the representation of biomolecular data. Voxel grid representations have emerged as a straightforward method for depicting 3D molecular structures of protein-ligand complexes. Proper structural preparation of these complexes is also crucial, particularly in models where the orientation of hydrogen atoms and the accurate assignment of protonation/tautomeric states are vital. The PDBbind, a widely used dataset, can be improved in this regard. This work presents an enhanced version of the PDBbind v.2020 refined set concerning structural preparation, a voxel representation of these structures suitable for DL model training and a diverse set of docking-generated poses that could be used to develop new scoring functions for pose prediction. We also introduce DockTGrid, a software library developed to generate these voxel representations, which can be adapted to create new molecular features. With this work, we aim to provide the CADD community with high-quality, accessible resources to facilitate the development of DL models for drug discovery.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.26434/chemrxiv-2023-f4q6k
- https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389564930
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389564930Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26434/chemrxiv-2023-f4q6kDigital Object Identifier
- Title
-
Deep Learning-Ready Voxel Representation of Protein-Ligand Complexes from an Enhanced PBDbind v.2020 DatasetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-11Full publication date if available
- Authors
-
Matheus Müller Pereira da Silva, Isabella Alvim Guedes, Fábio Lima Custódio, Laurent E. DardenneList of authors in order
- Landing page
-
https://doi.org/10.26434/chemrxiv-2023-f4q6kPublisher landing page
- PDF URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdfDirect OA link when available
- Concepts
-
Computer science, Voxel, Representation (politics), Artificial intelligence, Set (abstract data type), Deep learning, Drug discovery, Software, Bioinformatics, Programming language, Biology, Politics, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389564930 |
|---|---|
| doi | https://doi.org/10.26434/chemrxiv-2023-f4q6k |
| ids.doi | https://doi.org/10.26434/chemrxiv-2023-f4q6k |
| ids.openalex | https://openalex.org/W4389564930 |
| fwci | 0.3089612 |
| type | preprint |
| title | Deep Learning-Ready Voxel Representation of Protein-Ligand Complexes from an Enhanced PBDbind v.2020 Dataset |
| awards[0].id | https://openalex.org/G1778140833 |
| awards[0].funder_id | https://openalex.org/F4320322749 |
| awards[0].display_name | |
| awards[0].funder_award_id | E-26/010.001415/2019, E-26/211.357/2021, E-26/ 200.393/2023, E-26/200.608/2022, E-26/210.372/2022 |
| awards[0].funder_display_name | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320322749 |
| funders[0].ror | https://ror.org/03kk0s825 |
| funders[0].display_name | Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7225799560546875 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C54170458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6795334815979004 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[1].display_name | Voxel |
| concepts[2].id | https://openalex.org/C2776359362 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5632993578910828 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[2].display_name | Representation (politics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.507864773273468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4705743193626404 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46508142352104187 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C74187038 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4466623067855835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[6].display_name | Drug discovery |
| concepts[7].id | https://openalex.org/C2777904410 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4253019392490387 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[7].display_name | Software |
| concepts[8].id | https://openalex.org/C60644358 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1808614730834961 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[8].display_name | Bioinformatics |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.09627196192741394 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07749295234680176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C94625758 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[11].display_name | Politics |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| concepts[13].id | https://openalex.org/C199539241 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[13].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7225799560546875 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/voxel |
| keywords[1].score | 0.6795334815979004 |
| keywords[1].display_name | Voxel |
| keywords[2].id | https://openalex.org/keywords/representation |
| keywords[2].score | 0.5632993578910828 |
| keywords[2].display_name | Representation (politics) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.507864773273468 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.4705743193626404 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.46508142352104187 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/drug-discovery |
| keywords[6].score | 0.4466623067855835 |
| keywords[6].display_name | Drug discovery |
| keywords[7].id | https://openalex.org/keywords/software |
| keywords[7].score | 0.4253019392490387 |
| keywords[7].display_name | Software |
| keywords[8].id | https://openalex.org/keywords/bioinformatics |
| keywords[8].score | 0.1808614730834961 |
| keywords[8].display_name | Bioinformatics |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.09627196192741394 |
| keywords[9].display_name | Programming language |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.07749295234680176 |
| keywords[10].display_name | Biology |
| language | en |
| locations[0].id | doi:10.26434/chemrxiv-2023-f4q6k |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26434/chemrxiv-2023-f4q6k |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5043275555 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0659-6365 |
| authorships[0].author.display_name | Matheus Müller Pereira da Silva |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210142352 |
| authorships[0].affiliations[0].raw_affiliation_string | Laboratório Nacional de Computação Científica |
| authorships[0].institutions[0].id | https://openalex.org/I4210142352 |
| authorships[0].institutions[0].ror | https://ror.org/0498ekt05 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210142352 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Laboratório Nacional de Computação Científica |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matheus Müller Pereira da Silva |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Laboratório Nacional de Computação Científica |
| authorships[1].author.id | https://openalex.org/A5008226082 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9761-4804 |
| authorships[1].author.display_name | Isabella Alvim Guedes |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210142352 |
| authorships[1].affiliations[0].raw_affiliation_string | Laboratório Nacional de Computação Científica |
| authorships[1].institutions[0].id | https://openalex.org/I4210142352 |
| authorships[1].institutions[0].ror | https://ror.org/0498ekt05 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210142352 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Laboratório Nacional de Computação Científica |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Isabella Alvim Guedes |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Laboratório Nacional de Computação Científica |
| authorships[2].author.id | https://openalex.org/A5020129323 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5134-2340 |
| authorships[2].author.display_name | Fábio Lima Custódio |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210142352 |
| authorships[2].affiliations[0].raw_affiliation_string | Laboratório Nacional de Computação Científica |
| authorships[2].institutions[0].id | https://openalex.org/I4210142352 |
| authorships[2].institutions[0].ror | https://ror.org/0498ekt05 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210142352 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Laboratório Nacional de Computação Científica |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fábio Lima Custódio |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Laboratório Nacional de Computação Científica |
| authorships[3].author.id | https://openalex.org/A5084969079 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8518-8062 |
| authorships[3].author.display_name | Laurent E. Dardenne |
| authorships[3].countries | BR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210142352 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratório Nacional de Computação Científica |
| authorships[3].institutions[0].id | https://openalex.org/I4210142352 |
| authorships[3].institutions[0].ror | https://ror.org/0498ekt05 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210142352 |
| authorships[3].institutions[0].country_code | BR |
| authorships[3].institutions[0].display_name | Laboratório Nacional de Computação Científica |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Laurent Emmanuel Dardenne |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Laboratório Nacional de Computação Científica |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning-Ready Voxel Representation of Protein-Ligand Complexes from an Enhanced PBDbind v.2020 Dataset |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W3027020613, https://openalex.org/W2016533837, https://openalex.org/W3167885074, https://openalex.org/W2892386716, https://openalex.org/W1998563493, https://openalex.org/W4306164210, https://openalex.org/W4313316311, https://openalex.org/W4362608745, https://openalex.org/W2383143032, https://openalex.org/W2082728368 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26434/chemrxiv-2023-f4q6k |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2023-f4q6k |
| primary_location.id | doi:10.26434/chemrxiv-2023-f4q6k |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/657346e75bc9fcb5c9638a29/original/deep-learning-ready-voxel-representation-of-protein-ligand-complexes-from-an-enhanced-pb-dbind-v-2020-dataset.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26434/chemrxiv-2023-f4q6k |
| publication_date | 2023-12-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4221147818, https://openalex.org/W4210617107, https://openalex.org/W4292960574, https://openalex.org/W2980863799, https://openalex.org/W4287026975, https://openalex.org/W4382813033, https://openalex.org/W4387617009, https://openalex.org/W2937307539, https://openalex.org/W2529996553, https://openalex.org/W3118341329, https://openalex.org/W4388489589, https://openalex.org/W2784213390, https://openalex.org/W4317776906, https://openalex.org/W3126954028, https://openalex.org/W2114162221, https://openalex.org/W6631828510, https://openalex.org/W3128361605, https://openalex.org/W3135726897, https://openalex.org/W2999342780, https://openalex.org/W2587598315, https://openalex.org/W2902812092, https://openalex.org/W6801409061, https://openalex.org/W4393454903, https://openalex.org/W4376131268, https://openalex.org/W4386044113, https://openalex.org/W2905286816, https://openalex.org/W6948552194, https://openalex.org/W2009400274, https://openalex.org/W2079159737, https://openalex.org/W3211705646, https://openalex.org/W2169678694, https://openalex.org/W3006477052, https://openalex.org/W2053174787, https://openalex.org/W2768638516, https://openalex.org/W2617750324, https://openalex.org/W2031168104, https://openalex.org/W4387616670, https://openalex.org/W4367040797, https://openalex.org/W3216686093, https://openalex.org/W1993046136, https://openalex.org/W2893435209, https://openalex.org/W3201539868, https://openalex.org/W4379011893, https://openalex.org/W3209790821, https://openalex.org/W4283013935, https://openalex.org/W1990724722, https://openalex.org/W3001282080, https://openalex.org/W3168430821, https://openalex.org/W2128629409, https://openalex.org/W3104705366, https://openalex.org/W2781821160, https://openalex.org/W2109750398, https://openalex.org/W3098269892, https://openalex.org/W4249834836, https://openalex.org/W3209764902, https://openalex.org/W3043461363, https://openalex.org/W3198599144, https://openalex.org/W3023204497, https://openalex.org/W4310273071 |
| referenced_works_count | 59 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 26, 66, 91, 103, 125 |
| abstract_inverted_index.3D | 31 |
| abstract_inverted_index.DL | 99, 162 |
| abstract_inverted_index.We | 121 |
| abstract_inverted_index.an | 79 |
| abstract_inverted_index.as | 25 |
| abstract_inverted_index.be | 71, 111, 136 |
| abstract_inverted_index.in | 9, 47, 73 |
| abstract_inverted_index.is | 14, 43 |
| abstract_inverted_index.of | 3, 17, 34, 40, 52, 59, 82, 94, 106, 161 |
| abstract_inverted_index.to | 113, 129, 138, 148, 157 |
| abstract_inverted_index.we | 146 |
| abstract_inverted_index.The | 64 |
| abstract_inverted_index.aim | 147 |
| abstract_inverted_index.and | 55, 102 |
| abstract_inverted_index.are | 62 |
| abstract_inverted_index.can | 70, 135 |
| abstract_inverted_index.for | 29, 98, 118, 164 |
| abstract_inverted_index.new | 115, 140 |
| abstract_inverted_index.set | 87, 105 |
| abstract_inverted_index.the | 15, 50, 56, 83, 150, 159 |
| abstract_inverted_index.(DL) | 7 |
| abstract_inverted_index.CADD | 151 |
| abstract_inverted_index.This | 76 |
| abstract_inverted_index.With | 143 |
| abstract_inverted_index.also | 44, 122 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.drug | 11, 165 |
| abstract_inverted_index.grid | 21 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.pose | 119 |
| abstract_inverted_index.that | 109 |
| abstract_inverted_index.this | 74, 144 |
| abstract_inverted_index.used | 68, 112 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.work | 77 |
| abstract_inverted_index.Voxel | 20 |
| abstract_inverted_index.atoms | 54 |
| abstract_inverted_index.could | 110 |
| abstract_inverted_index.data. | 19 |
| abstract_inverted_index.model | 100 |
| abstract_inverted_index.poses | 108 |
| abstract_inverted_index.these | 41, 95, 131 |
| abstract_inverted_index.voxel | 92, 132 |
| abstract_inverted_index.where | 49 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.work, | 145 |
| abstract_inverted_index.(CADD) | 13 |
| abstract_inverted_index.Proper | 37 |
| abstract_inverted_index.aspect | 2 |
| abstract_inverted_index.create | 139 |
| abstract_inverted_index.method | 28 |
| abstract_inverted_index.models | 48, 163 |
| abstract_inverted_index.states | 61 |
| abstract_inverted_index.v.2020 | 85 |
| abstract_inverted_index.vital. | 63 |
| abstract_inverted_index.widely | 67 |
| abstract_inverted_index.PDBbind | 84 |
| abstract_inverted_index.adapted | 137 |
| abstract_inverted_index.develop | 114 |
| abstract_inverted_index.diverse | 104 |
| abstract_inverted_index.emerged | 24 |
| abstract_inverted_index.library | 127 |
| abstract_inverted_index.provide | 149 |
| abstract_inverted_index.refined | 86 |
| abstract_inverted_index.regard. | 75 |
| abstract_inverted_index.scoring | 116 |
| abstract_inverted_index.version | 81 |
| abstract_inverted_index.PDBbind, | 65 |
| abstract_inverted_index.accurate | 57 |
| abstract_inverted_index.critical | 1 |
| abstract_inverted_index.crucial, | 45 |
| abstract_inverted_index.dataset, | 69 |
| abstract_inverted_index.enhanced | 80 |
| abstract_inverted_index.generate | 130 |
| abstract_inverted_index.hydrogen | 53 |
| abstract_inverted_index.improved | 72 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.presents | 78 |
| abstract_inverted_index.software | 126 |
| abstract_inverted_index.suitable | 97 |
| abstract_inverted_index.training | 101 |
| abstract_inverted_index.community | 152 |
| abstract_inverted_index.complexes | 42 |
| abstract_inverted_index.depicting | 30 |
| abstract_inverted_index.developed | 128 |
| abstract_inverted_index.discovery | 12 |
| abstract_inverted_index.features. | 142 |
| abstract_inverted_index.functions | 117 |
| abstract_inverted_index.introduce | 123 |
| abstract_inverted_index.modelling | 8 |
| abstract_inverted_index.molecular | 32, 141 |
| abstract_inverted_index.resources | 156 |
| abstract_inverted_index.DockTGrid, | 124 |
| abstract_inverted_index.accessible | 155 |
| abstract_inverted_index.assignment | 58 |
| abstract_inverted_index.complexes. | 36 |
| abstract_inverted_index.concerning | 88 |
| abstract_inverted_index.discovery. | 166 |
| abstract_inverted_index.facilitate | 158 |
| abstract_inverted_index.structural | 38, 89 |
| abstract_inverted_index.structures | 33, 96 |
| abstract_inverted_index.successful | 4 |
| abstract_inverted_index.development | 160 |
| abstract_inverted_index.orientation | 51 |
| abstract_inverted_index.prediction. | 120 |
| abstract_inverted_index.preparation | 39 |
| abstract_inverted_index.biomolecular | 18 |
| abstract_inverted_index.particularly | 46 |
| abstract_inverted_index.preparation, | 90 |
| abstract_inverted_index.high-quality, | 154 |
| abstract_inverted_index.computer-aided | 10 |
| abstract_inverted_index.protein-ligand | 35 |
| abstract_inverted_index.representation | 16, 93 |
| abstract_inverted_index.representations | 22 |
| abstract_inverted_index.straightforward | 27 |
| abstract_inverted_index.representations, | 133 |
| abstract_inverted_index.docking-generated | 107 |
| abstract_inverted_index.protonation/tautomeric | 60 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.61683212 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |