Deep Learning Solution for Quantification of Fluorescence Particles on a Membrane Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23041794
The detection and quantification of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus particles in ambient waters using a membrane-based in-gel loop-mediated isothermal amplification (mgLAMP) method can play an important role in large-scale environmental surveillance for early warning of potential outbreaks. However, counting particles or cells in fluorescence microscopy is an expensive, time-consuming, and tedious task that only highly trained technicians and researchers can perform. Although such objects are generally easy to identify, manually annotating cells is occasionally prone to fatigue errors and arbitrariness due to the operator’s interpretation of borderline cases. In this research, we proposed a method to detect and quantify multiscale and shape variant SARS-CoV-2 fluorescent cells generated using a portable (mgLAMP) system and captured using a smartphone camera. The proposed method is based on the YOLOv5 algorithm, which uses CSPnet as its backbone. CSPnet is a recently proposed convolutional neural network (CNN) that duplicates gradient information within the network using a combination of Dense nets and ResNet blocks, and bottleneck convolution layers to reduce computation while at the same time maintaining high accuracy. In addition, we apply the test time augmentation (TTA) algorithm in conjunction with YOLO’s one-stage multihead detection heads to detect all cells of varying sizes and shapes. We evaluated the model using a private dataset provided by the Linde + Robinson Laboratory, California Institute of Technology, United States. The model achieved a [email protected] score of 90.3 in the YOLOv5-s6.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23041794
- https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621
- OA Status
- gold
- Cited By
- 3
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4319319909
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4319319909Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23041794Digital Object Identifier
- Title
-
Deep Learning Solution for Quantification of Fluorescence Particles on a MembraneWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-05Full publication date if available
- Authors
-
Abdellah Zakaria Sellam, Azeddine Benlamoudi, Clément Cid, Léopold Dobelle, Amina Slama, Yassin El Hillali, Abdelmalik Taleb‐AhmedList of authors in order
- Landing page
-
https://doi.org/10.3390/s23041794Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621Direct OA link when available
- Concepts
-
Fluorescence, Membrane, Computer science, Nanotechnology, Chemistry, Artificial intelligence, Chromatography, Materials science, Physics, Optics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4319319909 |
|---|---|
| doi | https://doi.org/10.3390/s23041794 |
| ids.doi | https://doi.org/10.3390/s23041794 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36850392 |
| ids.openalex | https://openalex.org/W4319319909 |
| fwci | 0.47663415 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000086382 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | COVID-19 |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000077321 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Deep Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000086402 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | SARS-CoV-2 |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008566 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Membranes |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008856 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Microscopy, Fluorescence |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000086382 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | COVID-19 |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000077321 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Deep Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000086402 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | SARS-CoV-2 |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008566 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Membranes |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008856 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Microscopy, Fluorescence |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000086382 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | COVID-19 |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000077321 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Deep Learning |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000086402 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | SARS-CoV-2 |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008566 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Membranes |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008856 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Microscopy, Fluorescence |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000086382 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | COVID-19 |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000077321 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Deep Learning |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000086402 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | SARS-CoV-2 |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008566 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Membranes |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008856 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Microscopy, Fluorescence |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000086382 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | COVID-19 |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000077321 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Deep Learning |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000086402 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | SARS-CoV-2 |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D008566 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Membranes |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D008856 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Microscopy, Fluorescence |
| type | article |
| title | Deep Learning Solution for Quantification of Fluorescence Particles on a Membrane |
| awards[0].id | https://openalex.org/G6725028963 |
| awards[0].funder_id | https://openalex.org/F4320306137 |
| awards[0].display_name | |
| awards[0].funder_award_id | INV-030223 |
| awards[0].funder_display_name | Bill and Melinda Gates Foundation |
| biblio.issue | 4 |
| biblio.volume | 23 |
| biblio.last_page | 1794 |
| biblio.first_page | 1794 |
| topics[0].id | https://openalex.org/T11393 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9871000051498413 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Biosensors and Analytical Detection |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9793999791145325 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T11324 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9697999954223633 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Spectroscopy Techniques in Biomedical and Chemical Research |
| funders[0].id | https://openalex.org/F4320306137 |
| funders[0].ror | https://ror.org/0456r8d26 |
| funders[0].display_name | Bill and Melinda Gates Foundation |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2162 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2331 |
| concepts[0].id | https://openalex.org/C91881484 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6455108523368835 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[0].display_name | Fluorescence |
| concepts[1].id | https://openalex.org/C41625074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5062657594680786 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176088 |
| concepts[1].display_name | Membrane |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.40205711126327515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C171250308 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37623587250709534 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[3].display_name | Nanotechnology |
| concepts[4].id | https://openalex.org/C185592680 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3715142011642456 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[4].display_name | Chemistry |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3713180422782898 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C43617362 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3519231081008911 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[6].display_name | Chromatography |
| concepts[7].id | https://openalex.org/C192562407 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2983579933643341 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[7].display_name | Materials science |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1549275517463684 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C120665830 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13592657446861267 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[9].display_name | Optics |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12338188290596008 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/fluorescence |
| keywords[0].score | 0.6455108523368835 |
| keywords[0].display_name | Fluorescence |
| keywords[1].id | https://openalex.org/keywords/membrane |
| keywords[1].score | 0.5062657594680786 |
| keywords[1].display_name | Membrane |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.40205711126327515 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/nanotechnology |
| keywords[3].score | 0.37623587250709534 |
| keywords[3].display_name | Nanotechnology |
| keywords[4].id | https://openalex.org/keywords/chemistry |
| keywords[4].score | 0.3715142011642456 |
| keywords[4].display_name | Chemistry |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3713180422782898 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/chromatography |
| keywords[6].score | 0.3519231081008911 |
| keywords[6].display_name | Chromatography |
| keywords[7].id | https://openalex.org/keywords/materials-science |
| keywords[7].score | 0.2983579933643341 |
| keywords[7].display_name | Materials science |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.1549275517463684 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/optics |
| keywords[9].score | 0.13592657446861267 |
| keywords[9].display_name | Optics |
| keywords[10].id | https://openalex.org/keywords/biochemistry |
| keywords[10].score | 0.12338188290596008 |
| keywords[10].display_name | Biochemistry |
| language | en |
| locations[0].id | doi:10.3390/s23041794 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23041794 |
| locations[1].id | pmid:36850392 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36850392 |
| locations[2].id | pmh:oai:HAL:hal-04044243v1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal articles |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, 2023, 23 (4), pp.1794. ⟨10.3390/s23041794⟩ |
| locations[2].landing_page_url | https://hal.science/hal-04044243 |
| locations[3].id | pmh:oai:doaj.org/article:5f313c3fc5e147e49833c78984429d52 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 4, p 1794 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/5f313c3fc5e147e49833c78984429d52 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/4/1794/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23041794 |
| locations[5].id | pmh:oai:pubmedcentral.nih.gov:9967937 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S2764455111 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | PubMed Central |
| locations[5].source.host_organization | https://openalex.org/I1299303238 |
| locations[5].source.host_organization_name | National Institutes of Health |
| locations[5].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[5].license | other-oa |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Text |
| locations[5].license_id | https://openalex.org/licenses/other-oa |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | Sensors (Basel) |
| locations[5].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9967937 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5033921979 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-6876-2220 |
| authorships[0].author.display_name | Abdellah Zakaria Sellam |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210155236 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210155236 |
| authorships[0].institutions[0].ror | https://ror.org/04zaypm56 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210155236 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | National Research Council |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdellah Zakaria Sellam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy |
| authorships[1].author.id | https://openalex.org/A5089464212 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2023-2154 |
| authorships[1].author.display_name | Azeddine Benlamoudi |
| authorships[1].countries | DZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114564095 |
| authorships[1].affiliations[0].raw_affiliation_string | Laboratoire de Génie Électrique, Faculté des Nouvelles Technologies de l’Information et de la Communication, Université Ouargla, Ouargla 30000, Algeria |
| authorships[1].institutions[0].id | https://openalex.org/I114564095 |
| authorships[1].institutions[0].ror | https://ror.org/05amrd548 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114564095 |
| authorships[1].institutions[0].country_code | DZ |
| authorships[1].institutions[0].display_name | University of Ouargla |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Azeddine Benlamoudi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Laboratoire de Génie Électrique, Faculté des Nouvelles Technologies de l’Information et de la Communication, Université Ouargla, Ouargla 30000, Algeria |
| authorships[2].author.id | https://openalex.org/A5009531297 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7293-035X |
| authorships[2].author.display_name | Clément Cid |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I122411786 |
| authorships[2].affiliations[0].raw_affiliation_string | Linde Laboratories, California Institute of Technology, Pasadena, CA 91125, USA |
| authorships[2].institutions[0].id | https://openalex.org/I122411786 |
| authorships[2].institutions[0].ror | https://ror.org/05dxps055 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I122411786 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | California Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Clément Antoine Cid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Linde Laboratories, California Institute of Technology, Pasadena, CA 91125, USA |
| authorships[3].author.id | https://openalex.org/A5050665275 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Léopold Dobelle |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I122411786 |
| authorships[3].affiliations[0].raw_affiliation_string | Linde Laboratories, California Institute of Technology, Pasadena, CA 91125, USA |
| authorships[3].institutions[0].id | https://openalex.org/I122411786 |
| authorships[3].institutions[0].ror | https://ror.org/05dxps055 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I122411786 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | California Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leopold Dobelle |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Linde Laboratories, California Institute of Technology, Pasadena, CA 91125, USA |
| authorships[4].author.id | https://openalex.org/A5035128417 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Amina Slama |
| authorships[4].countries | DZ |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I206961696 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Humanities and Social Sciences, Mohamed Khider University of Biskra, Biskra 07000, Algeria |
| authorships[4].institutions[0].id | https://openalex.org/I206961696 |
| authorships[4].institutions[0].ror | https://ror.org/05fr5y859 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I206961696 |
| authorships[4].institutions[0].country_code | DZ |
| authorships[4].institutions[0].display_name | University of Biskra |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Amina Slama |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Humanities and Social Sciences, Mohamed Khider University of Biskra, Biskra 07000, Algeria |
| authorships[5].author.id | https://openalex.org/A5051015332 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3980-9902 |
| authorships[5].author.display_name | Yassin El Hillali |
| authorships[5].countries | FR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2279609970, https://openalex.org/I4210123471, https://openalex.org/I70348806 |
| authorships[5].affiliations[0].raw_affiliation_string | Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Polytechnique Hauts de France, Université de Lille, CNRS, 59313 Valenciennes, France |
| authorships[5].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[5].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[5].institutions[0].country_code | FR |
| authorships[5].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[5].institutions[1].id | https://openalex.org/I4210123471 |
| authorships[5].institutions[1].ror | https://ror.org/02q4res37 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I137614889, https://openalex.org/I2279609970, https://openalex.org/I3132279224, https://openalex.org/I4210095849, https://openalex.org/I4210123471, https://openalex.org/I4387154098, https://openalex.org/I70348806, https://openalex.org/I70348806, https://openalex.org/I7454413 |
| authorships[5].institutions[1].country_code | FR |
| authorships[5].institutions[1].display_name | Institut d'électronique de microélectronique et de nanotechnologie |
| authorships[5].institutions[2].id | https://openalex.org/I70348806 |
| authorships[5].institutions[2].ror | https://ror.org/02ezch769 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I70348806 |
| authorships[5].institutions[2].country_code | FR |
| authorships[5].institutions[2].display_name | Université Polytechnique Hauts-de-France |
| authorships[5].institutions[3].id | https://openalex.org/I2279609970 |
| authorships[5].institutions[3].ror | https://ror.org/02kzqn938 |
| authorships[5].institutions[3].type | education |
| authorships[5].institutions[3].lineage | https://openalex.org/I2279609970 |
| authorships[5].institutions[3].country_code | FR |
| authorships[5].institutions[3].display_name | Université de Lille |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yassin El Hillali |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Polytechnique Hauts de France, Université de Lille, CNRS, 59313 Valenciennes, France |
| authorships[6].author.id | https://openalex.org/A5088214859 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7218-3799 |
| authorships[6].author.display_name | Abdelmalik Taleb‐Ahmed |
| authorships[6].countries | FR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2279609970, https://openalex.org/I4210123471, https://openalex.org/I70348806 |
| authorships[6].affiliations[0].raw_affiliation_string | Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Polytechnique Hauts de France, Université de Lille, CNRS, 59313 Valenciennes, France |
| authorships[6].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[6].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[6].institutions[0].country_code | FR |
| authorships[6].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[6].institutions[1].id | https://openalex.org/I4210123471 |
| authorships[6].institutions[1].ror | https://ror.org/02q4res37 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I137614889, https://openalex.org/I2279609970, https://openalex.org/I3132279224, https://openalex.org/I4210095849, https://openalex.org/I4210123471, https://openalex.org/I4387154098, https://openalex.org/I70348806, https://openalex.org/I70348806, https://openalex.org/I7454413 |
| authorships[6].institutions[1].country_code | FR |
| authorships[6].institutions[1].display_name | Institut d'électronique de microélectronique et de nanotechnologie |
| authorships[6].institutions[2].id | https://openalex.org/I70348806 |
| authorships[6].institutions[2].ror | https://ror.org/02ezch769 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I70348806 |
| authorships[6].institutions[2].country_code | FR |
| authorships[6].institutions[2].display_name | Université Polytechnique Hauts-de-France |
| authorships[6].institutions[3].id | https://openalex.org/I2279609970 |
| authorships[6].institutions[3].ror | https://ror.org/02kzqn938 |
| authorships[6].institutions[3].type | education |
| authorships[6].institutions[3].lineage | https://openalex.org/I2279609970 |
| authorships[6].institutions[3].country_code | FR |
| authorships[6].institutions[3].display_name | Université de Lille |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Abdelmalik Taleb-Ahmed |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Institut d’Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Polytechnique Hauts de France, Université de Lille, CNRS, 59313 Valenciennes, France |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Solution for Quantification of Fluorescence Particles on a Membrane |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11393 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9871000051498413 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Biosensors and Analytical Detection |
| related_works | https://openalex.org/W2150391754, https://openalex.org/W2064710306, https://openalex.org/W1997484252, https://openalex.org/W1979156653, https://openalex.org/W2249456921, https://openalex.org/W2184834470, https://openalex.org/W2334502792, https://openalex.org/W2382309260, https://openalex.org/W2133255487, https://openalex.org/W4244927301 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s23041794 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23041794 |
| primary_location.id | doi:10.3390/s23041794 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/4/1794/pdf?version=1676540621 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23041794 |
| publication_date | 2023-02-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4200429845, https://openalex.org/W3034731061, https://openalex.org/W3087611057, https://openalex.org/W3084086363, https://openalex.org/W3014221525, https://openalex.org/W3194685691, https://openalex.org/W4205844722, https://openalex.org/W4285793354, https://openalex.org/W4200267828, https://openalex.org/W2148743296, https://openalex.org/W2012231760, https://openalex.org/W2039051707, https://openalex.org/W2142332605, https://openalex.org/W4226106142, https://openalex.org/W2076063813, https://openalex.org/W2794284562, https://openalex.org/W2102605133, https://openalex.org/W1536680647, https://openalex.org/W2565639579, https://openalex.org/W6600529467, https://openalex.org/W2963037989, https://openalex.org/W2970971581, https://openalex.org/W1989210331, https://openalex.org/W2570343428, https://openalex.org/W2156163116, https://openalex.org/W2944319321, https://openalex.org/W2962766617, https://openalex.org/W2997747012, https://openalex.org/W6620707391, https://openalex.org/W2989676862, https://openalex.org/W3107867277, https://openalex.org/W3108849448, https://openalex.org/W2194775991, https://openalex.org/W2982083293, https://openalex.org/W2963125010, https://openalex.org/W639708223, https://openalex.org/W4280493322 |
| referenced_works_count | 37 |
| abstract_inverted_index.+ | 215 |
| abstract_inverted_index.a | 17, 96, 111, 118, 138, 153, 208, 227 |
| abstract_inverted_index.In | 91, 176 |
| abstract_inverted_index.We | 203 |
| abstract_inverted_index.an | 27, 49 |
| abstract_inverted_index.as | 133 |
| abstract_inverted_index.at | 169 |
| abstract_inverted_index.by | 212 |
| abstract_inverted_index.in | 13, 30, 45, 186, 232 |
| abstract_inverted_index.is | 48, 75, 124, 137 |
| abstract_inverted_index.of | 4, 37, 88, 155, 198, 220, 230 |
| abstract_inverted_index.on | 126 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 70, 78, 84, 98, 165, 194 |
| abstract_inverted_index.we | 94, 178 |
| abstract_inverted_index.The | 0, 121, 224 |
| abstract_inverted_index.all | 196 |
| abstract_inverted_index.and | 2, 52, 60, 81, 100, 103, 115, 158, 161, 201 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.can | 25, 62 |
| abstract_inverted_index.due | 83 |
| abstract_inverted_index.for | 34 |
| abstract_inverted_index.its | 134 |
| abstract_inverted_index.the | 85, 127, 150, 170, 180, 205, 213, 233 |
| abstract_inverted_index.90.3 | 231 |
| abstract_inverted_index.easy | 69 |
| abstract_inverted_index.high | 174 |
| abstract_inverted_index.nets | 157 |
| abstract_inverted_index.only | 56 |
| abstract_inverted_index.play | 26 |
| abstract_inverted_index.role | 29 |
| abstract_inverted_index.same | 171 |
| abstract_inverted_index.such | 65 |
| abstract_inverted_index.task | 54 |
| abstract_inverted_index.test | 181 |
| abstract_inverted_index.that | 55, 145 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.time | 172, 182 |
| abstract_inverted_index.uses | 131 |
| abstract_inverted_index.with | 188 |
| abstract_inverted_index.(CNN) | 144 |
| abstract_inverted_index.(TTA) | 184 |
| abstract_inverted_index.Dense | 156 |
| abstract_inverted_index.Linde | 214 |
| abstract_inverted_index.acute | 6 |
| abstract_inverted_index.apply | 179 |
| abstract_inverted_index.based | 125 |
| abstract_inverted_index.cells | 44, 74, 108, 197 |
| abstract_inverted_index.early | 35 |
| abstract_inverted_index.heads | 193 |
| abstract_inverted_index.model | 206, 225 |
| abstract_inverted_index.prone | 77 |
| abstract_inverted_index.score | 229 |
| abstract_inverted_index.shape | 104 |
| abstract_inverted_index.sizes | 200 |
| abstract_inverted_index.using | 16, 110, 117, 152, 207 |
| abstract_inverted_index.virus | 11 |
| abstract_inverted_index.which | 130 |
| abstract_inverted_index.while | 168 |
| abstract_inverted_index.CSPnet | 132, 136 |
| abstract_inverted_index.ResNet | 159 |
| abstract_inverted_index.United | 222 |
| abstract_inverted_index.YOLOv5 | 128 |
| abstract_inverted_index.cases. | 90 |
| abstract_inverted_index.detect | 99, 195 |
| abstract_inverted_index.errors | 80 |
| abstract_inverted_index.highly | 57 |
| abstract_inverted_index.in-gel | 19 |
| abstract_inverted_index.layers | 164 |
| abstract_inverted_index.method | 24, 97, 123 |
| abstract_inverted_index.neural | 142 |
| abstract_inverted_index.reduce | 166 |
| abstract_inverted_index.severe | 5 |
| abstract_inverted_index.system | 114 |
| abstract_inverted_index.waters | 15 |
| abstract_inverted_index.within | 149 |
| abstract_inverted_index.States. | 223 |
| abstract_inverted_index.ambient | 14 |
| abstract_inverted_index.blocks, | 160 |
| abstract_inverted_index.camera. | 120 |
| abstract_inverted_index.dataset | 210 |
| abstract_inverted_index.fatigue | 79 |
| [email protected] | 228 |
| abstract_inverted_index.network | 143, 151 |
| abstract_inverted_index.objects | 66 |
| abstract_inverted_index.private | 209 |
| abstract_inverted_index.shapes. | 202 |
| abstract_inverted_index.tedious | 53 |
| abstract_inverted_index.trained | 58 |
| abstract_inverted_index.variant | 105 |
| abstract_inverted_index.varying | 199 |
| abstract_inverted_index.warning | 36 |
| abstract_inverted_index.(mgLAMP) | 23, 113 |
| abstract_inverted_index.Although | 64 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.Robinson | 216 |
| abstract_inverted_index.YOLO’s | 189 |
| abstract_inverted_index.achieved | 226 |
| abstract_inverted_index.captured | 116 |
| abstract_inverted_index.counting | 41 |
| abstract_inverted_index.gradient | 147 |
| abstract_inverted_index.manually | 72 |
| abstract_inverted_index.perform. | 63 |
| abstract_inverted_index.portable | 112 |
| abstract_inverted_index.proposed | 95, 122, 140 |
| abstract_inverted_index.provided | 211 |
| abstract_inverted_index.quantify | 101 |
| abstract_inverted_index.recently | 139 |
| abstract_inverted_index.syndrome | 8 |
| abstract_inverted_index.Institute | 219 |
| abstract_inverted_index.accuracy. | 175 |
| abstract_inverted_index.addition, | 177 |
| abstract_inverted_index.algorithm | 185 |
| abstract_inverted_index.backbone. | 135 |
| abstract_inverted_index.detection | 1, 192 |
| abstract_inverted_index.evaluated | 204 |
| abstract_inverted_index.generally | 68 |
| abstract_inverted_index.generated | 109 |
| abstract_inverted_index.identify, | 71 |
| abstract_inverted_index.important | 28 |
| abstract_inverted_index.multihead | 191 |
| abstract_inverted_index.one-stage | 190 |
| abstract_inverted_index.particles | 12, 42 |
| abstract_inverted_index.potential | 38 |
| abstract_inverted_index.research, | 93 |
| abstract_inverted_index.California | 218 |
| abstract_inverted_index.SARS-CoV-2 | 106 |
| abstract_inverted_index.YOLOv5-s6. | 234 |
| abstract_inverted_index.algorithm, | 129 |
| abstract_inverted_index.annotating | 73 |
| abstract_inverted_index.borderline | 89 |
| abstract_inverted_index.bottleneck | 162 |
| abstract_inverted_index.duplicates | 146 |
| abstract_inverted_index.expensive, | 50 |
| abstract_inverted_index.isothermal | 21 |
| abstract_inverted_index.microscopy | 47 |
| abstract_inverted_index.multiscale | 102 |
| abstract_inverted_index.outbreaks. | 39 |
| abstract_inverted_index.smartphone | 119 |
| abstract_inverted_index.Laboratory, | 217 |
| abstract_inverted_index.Technology, | 221 |
| abstract_inverted_index.combination | 154 |
| abstract_inverted_index.computation | 167 |
| abstract_inverted_index.conjunction | 187 |
| abstract_inverted_index.convolution | 163 |
| abstract_inverted_index.fluorescent | 107 |
| abstract_inverted_index.information | 148 |
| abstract_inverted_index.large-scale | 31 |
| abstract_inverted_index.maintaining | 173 |
| abstract_inverted_index.researchers | 61 |
| abstract_inverted_index.respiratory | 7 |
| abstract_inverted_index.technicians | 59 |
| abstract_inverted_index.(SARS-CoV-2) | 10 |
| abstract_inverted_index.augmentation | 183 |
| abstract_inverted_index.fluorescence | 46 |
| abstract_inverted_index.occasionally | 76 |
| abstract_inverted_index.operator’s | 86 |
| abstract_inverted_index.surveillance | 33 |
| abstract_inverted_index.amplification | 22 |
| abstract_inverted_index.arbitrariness | 82 |
| abstract_inverted_index.convolutional | 141 |
| abstract_inverted_index.coronavirus-2 | 9 |
| abstract_inverted_index.environmental | 32 |
| abstract_inverted_index.loop-mediated | 20 |
| abstract_inverted_index.interpretation | 87 |
| abstract_inverted_index.membrane-based | 18 |
| abstract_inverted_index.quantification | 3 |
| abstract_inverted_index.time-consuming, | 51 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5088214859, https://openalex.org/A5033921979 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2279609970, https://openalex.org/I4210123471, https://openalex.org/I4210155236, https://openalex.org/I70348806 |
| citation_normalized_percentile.value | 0.54427327 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |