Deep Learning Techniques for Automatic Short Answer Grading Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.71097/ijsat.v16.i2.5299
Grading brief, subjective responses in classrooms is a labor-intensive and frequently uneven process, especially where distance learning and large-scale online courses are involved. Automated grading systems hold out the prospect of resolving this problem, easing the burden on educators without compromising on consistency and objectivity. This dissertation examines the application of deep learning methods—namely Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), and sophisticated transformer models like BERT and its variants—to improve the accuracy and efficiency of Automatic Short Answer Grading (ASAG). The study is done on the Mohler dataset, which contains a rich set of student answers for grading. By using these models on this dataset, the research seeks to enhance semantic comprehension, grading accuracy, and model generalization. The performance of every model is tested on this particular dataset, giving insights into the strengths and weaknesses of every method for ASAG tasks. This work advances the creation of scalable, automated marking systems that are applicable across multiple educational settings towards enabling personalized learning and increasing the efficiency of high-stakes assessment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.71097/ijsat.v16.i2.5299
- https://www.ijsat.org/papers/2025/2/5299.pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410850425
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410850425Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.71097/ijsat.v16.i2.5299Digital Object Identifier
- Title
-
Deep Learning Techniques for Automatic Short Answer GradingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-18Full publication date if available
- Authors
-
Parmar Ashishkumar Jagdishbhai -, Nikunj Gamit, Jaydev K. DaveList of authors in order
- Landing page
-
https://doi.org/10.71097/ijsat.v16.i2.5299Publisher landing page
- PDF URL
-
https://www.ijsat.org/papers/2025/2/5299.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ijsat.org/papers/2025/2/5299.pdfDirect OA link when available
- Concepts
-
Grading (engineering), Computer science, Artificial intelligence, Natural language processing, Deep learning, Machine learning, Engineering, Civil engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410850425 |
|---|---|
| doi | https://doi.org/10.71097/ijsat.v16.i2.5299 |
| ids.doi | https://doi.org/10.71097/ijsat.v16.i2.5299 |
| ids.openalex | https://openalex.org/W4410850425 |
| fwci | 0.0 |
| type | article |
| title | Deep Learning Techniques for Automatic Short Answer Grading |
| biblio.issue | 2 |
| biblio.volume | 16 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14025 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8847000002861023 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Educational Technology and Assessment |
| topics[1].id | https://openalex.org/T11902 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8360999822616577 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[2].id | https://openalex.org/T10959 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.7667999863624573 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3304 |
| topics[2].subfield.display_name | Education |
| topics[2].display_name | Student Assessment and Feedback |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777286243 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6471027135848999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[0].display_name | Grading (engineering) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5673458576202393 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5460456013679504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4247405230998993 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4150086045265198 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38832327723503113 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12491568922996521 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C147176958 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[7].display_name | Civil engineering |
| keywords[0].id | https://openalex.org/keywords/grading |
| keywords[0].score | 0.6471027135848999 |
| keywords[0].display_name | Grading (engineering) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5673458576202393 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5460456013679504 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.4247405230998993 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.4150086045265198 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.38832327723503113 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.12491568922996521 |
| keywords[6].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.71097/ijsat.v16.i2.5299 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5406984700 |
| locations[0].source.issn | 2229-7677 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2229-7677 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal on Science and Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://www.ijsat.org/papers/2025/2/5299.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal on Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.71097/ijsat.v16.i2.5299 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5117756262 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Parmar Ashishkumar Jagdishbhai - |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Parmar Ashishkumar Jagdishbhai - |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5020000084 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nikunj Gamit |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nikunj C. Gamit - |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069506427 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4324-8802 |
| authorships[2].author.display_name | Jaydev K. Dave |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jashvant R. Dave - |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijsat.org/papers/2025/2/5299.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Learning Techniques for Automatic Short Answer Grading |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14025 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8847000002861023 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Educational Technology and Assessment |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3082895349 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.71097/ijsat.v16.i2.5299 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5406984700 |
| best_oa_location.source.issn | 2229-7677 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2229-7677 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal on Science and Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://www.ijsat.org/papers/2025/2/5299.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal on Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.71097/ijsat.v16.i2.5299 |
| primary_location.id | doi:10.71097/ijsat.v16.i2.5299 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5406984700 |
| primary_location.source.issn | 2229-7677 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2229-7677 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal on Science and Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://www.ijsat.org/papers/2025/2/5299.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal on Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.71097/ijsat.v16.i2.5299 |
| publication_date | 2025-05-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 93 |
| abstract_inverted_index.By | 101 |
| abstract_inverted_index.in | 4 |
| abstract_inverted_index.is | 6, 85, 125 |
| abstract_inverted_index.of | 30, 50, 77, 96, 122, 138, 149, 169 |
| abstract_inverted_index.on | 37, 41, 87, 105, 127 |
| abstract_inverted_index.to | 111 |
| abstract_inverted_index.The | 83, 120 |
| abstract_inverted_index.and | 9, 17, 43, 63, 69, 75, 117, 136, 165 |
| abstract_inverted_index.are | 21, 155 |
| abstract_inverted_index.for | 99, 141 |
| abstract_inverted_index.its | 70 |
| abstract_inverted_index.out | 27 |
| abstract_inverted_index.set | 95 |
| abstract_inverted_index.the | 28, 35, 48, 73, 88, 108, 134, 147, 167 |
| abstract_inverted_index.ASAG | 142 |
| abstract_inverted_index.BERT | 68 |
| abstract_inverted_index.Long | 58 |
| abstract_inverted_index.This | 45, 144 |
| abstract_inverted_index.deep | 51 |
| abstract_inverted_index.done | 86 |
| abstract_inverted_index.hold | 26 |
| abstract_inverted_index.into | 133 |
| abstract_inverted_index.like | 67 |
| abstract_inverted_index.rich | 94 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.this | 32, 106, 128 |
| abstract_inverted_index.work | 145 |
| abstract_inverted_index.Short | 79 |
| abstract_inverted_index.every | 123, 139 |
| abstract_inverted_index.model | 118, 124 |
| abstract_inverted_index.seeks | 110 |
| abstract_inverted_index.study | 84 |
| abstract_inverted_index.these | 103 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.where | 14 |
| abstract_inverted_index.which | 91 |
| abstract_inverted_index.Answer | 80 |
| abstract_inverted_index.Memory | 60 |
| abstract_inverted_index.Mohler | 89 |
| abstract_inverted_index.Neural | 55 |
| abstract_inverted_index.across | 157 |
| abstract_inverted_index.brief, | 1 |
| abstract_inverted_index.burden | 36 |
| abstract_inverted_index.easing | 34 |
| abstract_inverted_index.giving | 131 |
| abstract_inverted_index.method | 140 |
| abstract_inverted_index.models | 66, 104 |
| abstract_inverted_index.online | 19 |
| abstract_inverted_index.tasks. | 143 |
| abstract_inverted_index.tested | 126 |
| abstract_inverted_index.uneven | 11 |
| abstract_inverted_index.(ASAG). | 82 |
| abstract_inverted_index.(CNNs), | 57 |
| abstract_inverted_index.Grading | 0, 81 |
| abstract_inverted_index.answers | 98 |
| abstract_inverted_index.courses | 20 |
| abstract_inverted_index.enhance | 112 |
| abstract_inverted_index.grading | 24, 115 |
| abstract_inverted_index.improve | 72 |
| abstract_inverted_index.marking | 152 |
| abstract_inverted_index.student | 97 |
| abstract_inverted_index.systems | 25, 153 |
| abstract_inverted_index.towards | 161 |
| abstract_inverted_index.without | 39 |
| abstract_inverted_index.(LSTMs), | 62 |
| abstract_inverted_index.Networks | 56 |
| abstract_inverted_index.accuracy | 74 |
| abstract_inverted_index.advances | 146 |
| abstract_inverted_index.contains | 92 |
| abstract_inverted_index.creation | 148 |
| abstract_inverted_index.dataset, | 90, 107, 130 |
| abstract_inverted_index.distance | 15 |
| abstract_inverted_index.enabling | 162 |
| abstract_inverted_index.examines | 47 |
| abstract_inverted_index.grading. | 100 |
| abstract_inverted_index.insights | 132 |
| abstract_inverted_index.learning | 16, 52, 164 |
| abstract_inverted_index.multiple | 158 |
| abstract_inverted_index.networks | 61 |
| abstract_inverted_index.problem, | 33 |
| abstract_inverted_index.process, | 12 |
| abstract_inverted_index.prospect | 29 |
| abstract_inverted_index.research | 109 |
| abstract_inverted_index.semantic | 113 |
| abstract_inverted_index.settings | 160 |
| abstract_inverted_index.Automated | 23 |
| abstract_inverted_index.Automatic | 78 |
| abstract_inverted_index.accuracy, | 116 |
| abstract_inverted_index.automated | 151 |
| abstract_inverted_index.educators | 38 |
| abstract_inverted_index.involved. | 22 |
| abstract_inverted_index.resolving | 31 |
| abstract_inverted_index.responses | 3 |
| abstract_inverted_index.scalable, | 150 |
| abstract_inverted_index.strengths | 135 |
| abstract_inverted_index.Short-Term | 59 |
| abstract_inverted_index.applicable | 156 |
| abstract_inverted_index.classrooms | 5 |
| abstract_inverted_index.efficiency | 76, 168 |
| abstract_inverted_index.especially | 13 |
| abstract_inverted_index.frequently | 10 |
| abstract_inverted_index.increasing | 166 |
| abstract_inverted_index.particular | 129 |
| abstract_inverted_index.subjective | 2 |
| abstract_inverted_index.weaknesses | 137 |
| abstract_inverted_index.application | 49 |
| abstract_inverted_index.assessment. | 171 |
| abstract_inverted_index.consistency | 42 |
| abstract_inverted_index.educational | 159 |
| abstract_inverted_index.high-stakes | 170 |
| abstract_inverted_index.large-scale | 18 |
| abstract_inverted_index.performance | 121 |
| abstract_inverted_index.transformer | 65 |
| abstract_inverted_index.compromising | 40 |
| abstract_inverted_index.dissertation | 46 |
| abstract_inverted_index.objectivity. | 44 |
| abstract_inverted_index.personalized | 163 |
| abstract_inverted_index.Convolutional | 54 |
| abstract_inverted_index.sophisticated | 64 |
| abstract_inverted_index.variants—to | 71 |
| abstract_inverted_index.comprehension, | 114 |
| abstract_inverted_index.generalization. | 119 |
| abstract_inverted_index.labor-intensive | 8 |
| abstract_inverted_index.methods—namely | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.24988872 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |