Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image Compression Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2209.04847
Lossless and near-lossless image compression is of paramount importance to professional users in many technical fields, such as medicine, remote sensing, precision engineering and scientific research. But despite rapidly growing research interests in learning-based image compression, no published method offers both lossless and near-lossless modes. In this paper, we propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression. In the lossless mode, the DLPR coding system first performs lossy compression and then lossless coding of residuals. We solve the joint lossy and residual compression problem in the approach of VAEs, and add autoregressive context modeling of the residuals to enhance lossless compression performance. In the near-lossless mode, we quantize the original residuals to satisfy a given $\ell_\infty$ error bound, and propose a scalable near-lossless compression scheme that works for variable $\ell_\infty$ bounds instead of training multiple networks. To expedite the DLPR coding, we increase the degree of algorithm parallelization by a novel design of coding context, and accelerate the entropy coding with adaptive residual interval. Experimental results demonstrate that the DLPR coding system achieves both the state-of-the-art lossless and near-lossless image compression performance with competitive coding speed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2209.04847
- https://arxiv.org/pdf/2209.04847
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4295689521
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4295689521Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2209.04847Digital Object Identifier
- Title
-
Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image CompressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-11Full publication date if available
- Authors
-
Yuanchao Bai, Xianming Liu, Kai Wang, Xiangyang Ji, Xiaolin Wu, Wen GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2209.04847Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2209.04847Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2209.04847Direct OA link when available
- Concepts
-
Lossless compression, Lossy compression, Lossless JPEG, Computer science, Adaptive coding, Image compression, Context-adaptive binary arithmetic coding, Entropy encoding, Data compression, Algorithm, Context-adaptive variable-length coding, Tunstall coding, Residual, Artificial intelligence, Theoretical computer science, Image processing, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4295689521 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2209.04847 |
| ids.doi | https://doi.org/10.48550/arxiv.2209.04847 |
| ids.openalex | https://openalex.org/W4295689521 |
| fwci | |
| type | preprint |
| title | Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image Compression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81081738 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9404826164245605 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55542 |
| concepts[0].display_name | Lossless compression |
| concepts[1].id | https://openalex.org/C165021410 |
| concepts[1].level | 2 |
| concepts[1].score | 0.9203943014144897 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q55564 |
| concepts[1].display_name | Lossy compression |
| concepts[2].id | https://openalex.org/C8384606 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6648266315460205 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2190356 |
| concepts[2].display_name | Lossless JPEG |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6299904584884644 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C57890076 |
| concepts[4].level | 4 |
| concepts[4].score | 0.6220035552978516 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4680725 |
| concepts[4].display_name | Adaptive coding |
| concepts[5].id | https://openalex.org/C13481523 |
| concepts[5].level | 4 |
| concepts[5].score | 0.6216407418251038 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q412438 |
| concepts[5].display_name | Image compression |
| concepts[6].id | https://openalex.org/C175732694 |
| concepts[6].level | 3 |
| concepts[6].score | 0.6073800325393677 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1128713 |
| concepts[6].display_name | Context-adaptive binary arithmetic coding |
| concepts[7].id | https://openalex.org/C1769480 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5695054531097412 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1345239 |
| concepts[7].display_name | Entropy encoding |
| concepts[8].id | https://openalex.org/C78548338 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5551034212112427 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[8].display_name | Data compression |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5296532511711121 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C135534801 |
| concepts[10].level | 4 |
| concepts[10].score | 0.5104362368583679 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1128721 |
| concepts[10].display_name | Context-adaptive variable-length coding |
| concepts[11].id | https://openalex.org/C73231260 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4692540168762207 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7853376 |
| concepts[11].display_name | Tunstall coding |
| concepts[12].id | https://openalex.org/C155512373 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4324406683444977 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[12].display_name | Residual |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35814017057418823 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C80444323 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3425936698913574 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[14].display_name | Theoretical computer science |
| concepts[15].id | https://openalex.org/C9417928 |
| concepts[15].level | 3 |
| concepts[15].score | 0.13013839721679688 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[15].display_name | Image processing |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.10835567116737366 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/lossless-compression |
| keywords[0].score | 0.9404826164245605 |
| keywords[0].display_name | Lossless compression |
| keywords[1].id | https://openalex.org/keywords/lossy-compression |
| keywords[1].score | 0.9203943014144897 |
| keywords[1].display_name | Lossy compression |
| keywords[2].id | https://openalex.org/keywords/lossless-jpeg |
| keywords[2].score | 0.6648266315460205 |
| keywords[2].display_name | Lossless JPEG |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6299904584884644 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/adaptive-coding |
| keywords[4].score | 0.6220035552978516 |
| keywords[4].display_name | Adaptive coding |
| keywords[5].id | https://openalex.org/keywords/image-compression |
| keywords[5].score | 0.6216407418251038 |
| keywords[5].display_name | Image compression |
| keywords[6].id | https://openalex.org/keywords/context-adaptive-binary-arithmetic-coding |
| keywords[6].score | 0.6073800325393677 |
| keywords[6].display_name | Context-adaptive binary arithmetic coding |
| keywords[7].id | https://openalex.org/keywords/entropy-encoding |
| keywords[7].score | 0.5695054531097412 |
| keywords[7].display_name | Entropy encoding |
| keywords[8].id | https://openalex.org/keywords/data-compression |
| keywords[8].score | 0.5551034212112427 |
| keywords[8].display_name | Data compression |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.5296532511711121 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/context-adaptive-variable-length-coding |
| keywords[10].score | 0.5104362368583679 |
| keywords[10].display_name | Context-adaptive variable-length coding |
| keywords[11].id | https://openalex.org/keywords/tunstall-coding |
| keywords[11].score | 0.4692540168762207 |
| keywords[11].display_name | Tunstall coding |
| keywords[12].id | https://openalex.org/keywords/residual |
| keywords[12].score | 0.4324406683444977 |
| keywords[12].display_name | Residual |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.35814017057418823 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[14].score | 0.3425936698913574 |
| keywords[14].display_name | Theoretical computer science |
| keywords[15].id | https://openalex.org/keywords/image-processing |
| keywords[15].score | 0.13013839721679688 |
| keywords[15].display_name | Image processing |
| keywords[16].id | https://openalex.org/keywords/image |
| keywords[16].score | 0.10835567116737366 |
| keywords[16].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2209.04847 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2209.04847 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2209.04847 |
| locations[1].id | doi:10.48550/arxiv.2209.04847 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2209.04847 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024093994 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3449-6537 |
| authorships[0].author.display_name | Yuanchao Bai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bai, Yuanchao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100654390 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8857-1785 |
| authorships[1].author.display_name | Xianming Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Xianming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100437036 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6170-4744 |
| authorships[2].author.display_name | Kai Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Kai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024401174 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7333-9975 |
| authorships[3].author.display_name | Xiangyang Ji |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ji, Xiangyang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101467562 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0103-5374 |
| authorships[4].author.display_name | Xiaolin Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu, Xiaolin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5018478553 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8070-802X |
| authorships[5].author.display_name | Wen Gao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Gao, Wen |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2209.04847 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image Compression |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| related_works | https://openalex.org/W3000696245, https://openalex.org/W2110189477, https://openalex.org/W2156373110, https://openalex.org/W2161727997, https://openalex.org/W2136537500, https://openalex.org/W2155733282, https://openalex.org/W2167897635, https://openalex.org/W61332197, https://openalex.org/W2015048732, https://openalex.org/W2083676471 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2209.04847 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2209.04847 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2209.04847 |
| primary_location.id | pmh:oai:arXiv.org:2209.04847 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2209.04847 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2209.04847 |
| publication_date | 2022-09-11 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 50, 124, 131, 160 |
| abstract_inverted_index.In | 45, 68, 113 |
| abstract_inverted_index.To | 147 |
| abstract_inverted_index.We | 86 |
| abstract_inverted_index.as | 17 |
| abstract_inverted_index.by | 159 |
| abstract_inverted_index.in | 12, 32, 95 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.no | 36 |
| abstract_inverted_index.of | 6, 84, 98, 105, 143, 156, 163 |
| abstract_inverted_index.to | 9, 108, 122 |
| abstract_inverted_index.we | 48, 117, 152 |
| abstract_inverted_index.But | 26 |
| abstract_inverted_index.add | 101 |
| abstract_inverted_index.and | 1, 23, 42, 52, 64, 80, 91, 100, 129, 166, 188 |
| abstract_inverted_index.for | 61, 138 |
| abstract_inverted_index.the | 69, 72, 88, 96, 106, 114, 119, 149, 154, 168, 179, 185 |
| abstract_inverted_index.DLPR | 73, 150, 180 |
| abstract_inverted_index.both | 40, 62, 184 |
| abstract_inverted_index.deep | 54 |
| abstract_inverted_index.many | 13 |
| abstract_inverted_index.plus | 56 |
| abstract_inverted_index.such | 16 |
| abstract_inverted_index.that | 136, 178 |
| abstract_inverted_index.then | 81 |
| abstract_inverted_index.this | 46 |
| abstract_inverted_index.with | 171, 193 |
| abstract_inverted_index.VAEs, | 99 |
| abstract_inverted_index.error | 127 |
| abstract_inverted_index.first | 76 |
| abstract_inverted_index.given | 125 |
| abstract_inverted_index.image | 3, 34, 66, 190 |
| abstract_inverted_index.joint | 89 |
| abstract_inverted_index.lossy | 55, 78, 90 |
| abstract_inverted_index.mode, | 71, 116 |
| abstract_inverted_index.novel | 161 |
| abstract_inverted_index.solve | 87 |
| abstract_inverted_index.users | 11 |
| abstract_inverted_index.works | 137 |
| abstract_inverted_index.(DLPR) | 58 |
| abstract_inverted_index.bound, | 128 |
| abstract_inverted_index.bounds | 141 |
| abstract_inverted_index.coding | 59, 74, 83, 164, 170, 181, 195 |
| abstract_inverted_index.degree | 155 |
| abstract_inverted_index.design | 162 |
| abstract_inverted_index.method | 38 |
| abstract_inverted_index.modes. | 44 |
| abstract_inverted_index.offers | 39 |
| abstract_inverted_index.paper, | 47 |
| abstract_inverted_index.remote | 19 |
| abstract_inverted_index.scheme | 135 |
| abstract_inverted_index.speed. | 196 |
| abstract_inverted_index.system | 75, 182 |
| abstract_inverted_index.coding, | 151 |
| abstract_inverted_index.context | 103 |
| abstract_inverted_index.despite | 27 |
| abstract_inverted_index.enhance | 109 |
| abstract_inverted_index.entropy | 169 |
| abstract_inverted_index.fields, | 15 |
| abstract_inverted_index.growing | 29 |
| abstract_inverted_index.instead | 142 |
| abstract_inverted_index.problem | 94 |
| abstract_inverted_index.propose | 49, 130 |
| abstract_inverted_index.rapidly | 28 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.satisfy | 123 |
| abstract_inverted_index.unified | 51 |
| abstract_inverted_index.Lossless | 0 |
| abstract_inverted_index.achieves | 183 |
| abstract_inverted_index.adaptive | 172 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.context, | 165 |
| abstract_inverted_index.expedite | 148 |
| abstract_inverted_index.increase | 153 |
| abstract_inverted_index.lossless | 41, 63, 70, 82, 110, 187 |
| abstract_inverted_index.modeling | 104 |
| abstract_inverted_index.multiple | 145 |
| abstract_inverted_index.original | 120 |
| abstract_inverted_index.performs | 77 |
| abstract_inverted_index.powerful | 53 |
| abstract_inverted_index.quantize | 118 |
| abstract_inverted_index.research | 30 |
| abstract_inverted_index.residual | 57, 92, 173 |
| abstract_inverted_index.scalable | 132 |
| abstract_inverted_index.sensing, | 20 |
| abstract_inverted_index.training | 144 |
| abstract_inverted_index.variable | 139 |
| abstract_inverted_index.algorithm | 157 |
| abstract_inverted_index.framework | 60 |
| abstract_inverted_index.interests | 31 |
| abstract_inverted_index.interval. | 174 |
| abstract_inverted_index.medicine, | 18 |
| abstract_inverted_index.networks. | 146 |
| abstract_inverted_index.paramount | 7 |
| abstract_inverted_index.precision | 21 |
| abstract_inverted_index.published | 37 |
| abstract_inverted_index.research. | 25 |
| abstract_inverted_index.residuals | 107, 121 |
| abstract_inverted_index.technical | 14 |
| abstract_inverted_index.accelerate | 167 |
| abstract_inverted_index.importance | 8 |
| abstract_inverted_index.residuals. | 85 |
| abstract_inverted_index.scientific | 24 |
| abstract_inverted_index.competitive | 194 |
| abstract_inverted_index.compression | 4, 79, 93, 111, 134, 191 |
| abstract_inverted_index.demonstrate | 177 |
| abstract_inverted_index.engineering | 22 |
| abstract_inverted_index.performance | 192 |
| abstract_inverted_index.Experimental | 175 |
| abstract_inverted_index.compression, | 35 |
| abstract_inverted_index.compression. | 67 |
| abstract_inverted_index.performance. | 112 |
| abstract_inverted_index.professional | 10 |
| abstract_inverted_index.$\ell_\infty$ | 126, 140 |
| abstract_inverted_index.near-lossless | 2, 43, 65, 115, 133, 189 |
| abstract_inverted_index.autoregressive | 102 |
| abstract_inverted_index.learning-based | 33 |
| abstract_inverted_index.parallelization | 158 |
| abstract_inverted_index.state-of-the-art | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |