Deep Multi-Agent Reinforcement Learning for Decentralized Active Hypothesis Testing Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3430392
We consider a decentralized formulation of the active hypothesis testing (AHT) problem, where multiple agents gather noisy observations from the environment with the purpose of identifying the correct hypothesis. At each time step, agents have the option to select a sampling action. These different actions result in observations drawn from various distributions, each associated with a specific hypothesis. The agents collaborate to accomplish the task, where message exchanges between agents are allowed over a rate-limited communications channel. The objective is to devise a multi-agent policy that minimizes the Bayes risk. This risk comprises both the cost of sampling and the joint terminal cost incurred by the agents upon making a hypothesis declaration. Deriving optimal structured policies for AHT problems is generally mathematically intractable, even in the context of a single agent. As a result, recent efforts have turned to deep learning methodologies to address these problems, which have exhibited significant success in single-agent learning scenarios. In this paper, we tackle the multi-agent AHT formulation by introducing a novel algorithm rooted in the framework of deep multi-agent reinforcement learning. This algorithm, named Multi-Agent Reinforcement Learning for AHT (MARLA), operates at each time step by having each agent map its state to an action (sampling rule or stopping rule) using a trained deep neural network with the goal of minimizing the Bayes risk. We present a comprehensive set of experimental results that effectively showcase the agents’ ability to learn collaborative strategies and enhance performance using MARLA. Furthermore, we demonstrate the superiority of MARLA over single-agent learning approaches. Finally, we provide an open-source implementation of the MARLA framework, for the benefit of researchers and developers in related domains.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3430392
- OA Status
- gold
- Cited By
- 2
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400770834
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400770834Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3430392Digital Object Identifier
- Title
-
Deep Multi-Agent Reinforcement Learning for Decentralized Active Hypothesis TestingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Hadar Szostak, Kobi CohenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3430392Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3430392Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Reinforcement, Artificial intelligence, Active learning (machine learning), Machine learning, Psychology, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400770834 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3430392 |
| ids.doi | https://doi.org/10.1109/access.2024.3430392 |
| ids.openalex | https://openalex.org/W4400770834 |
| fwci | 1.27241737 |
| type | article |
| title | Deep Multi-Agent Reinforcement Learning for Decentralized Active Hypothesis Testing |
| awards[0].id | https://openalex.org/G5755329095 |
| awards[0].funder_id | https://openalex.org/F4320322252 |
| awards[0].funder_award_id | 2640/20 |
| awards[0].funder_display_name | Israel Science Foundation |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 130459 |
| biblio.first_page | 130444 |
| grants[0].funder | https://openalex.org/F4320322252 |
| grants[0].award_id | 2640/20 |
| grants[0].funder_display_name | Israel Science Foundation |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9807999730110168 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.95169997215271 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9415000081062317 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| funders[0].id | https://openalex.org/F4320322252 |
| funders[0].ror | https://ror.org/04sazxf24 |
| funders[0].display_name | Israel Science Foundation |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7151252627372742 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.69707852602005 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C67203356 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5400370955467224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1321905 |
| concepts[2].display_name | Reinforcement |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.44027066230773926 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C77967617 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4154045581817627 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[4].display_name | Active learning (machine learning) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32118695974349976 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.08104884624481201 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C77805123 |
| concepts[7].level | 1 |
| concepts[7].score | 0.07522299885749817 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[7].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7151252627372742 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.69707852602005 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/reinforcement |
| keywords[2].score | 0.5400370955467224 |
| keywords[2].display_name | Reinforcement |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.44027066230773926 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/active-learning |
| keywords[4].score | 0.4154045581817627 |
| keywords[4].display_name | Active learning (machine learning) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.32118695974349976 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.08104884624481201 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/social-psychology |
| keywords[7].score | 0.07522299885749817 |
| keywords[7].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3430392 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3430392 |
| locations[1].id | pmh:oai:doaj.org/article:76aab702ac594c4aa50e29d07d1b7374 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 130444-130459 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/76aab702ac594c4aa50e29d07d1b7374 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5016627257 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hadar Szostak |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I124227911 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er Sheva, Israel |
| authorships[0].institutions[0].id | https://openalex.org/I124227911 |
| authorships[0].institutions[0].ror | https://ror.org/05tkyf982 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124227911 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Ben-Gurion University of the Negev |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hadar Szostak |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er Sheva, Israel |
| authorships[1].author.id | https://openalex.org/A5066085947 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0532-009X |
| authorships[1].author.display_name | Kobi Cohen |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124227911 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er Sheva, Israel |
| authorships[1].institutions[0].id | https://openalex.org/I124227911 |
| authorships[1].institutions[0].ror | https://ror.org/05tkyf982 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124227911 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Ben-Gurion University of the Negev |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Kobi Cohen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er Sheva, Israel |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3430392 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Multi-Agent Reinforcement Learning for Decentralized Active Hypothesis Testing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9807999730110168 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3430392 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3430392 |
| primary_location.id | doi:10.1109/access.2024.3430392 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3430392 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4308390426, https://openalex.org/W4232896127, https://openalex.org/W7025045700, https://openalex.org/W2045030310, https://openalex.org/W2077397896, https://openalex.org/W1990503235, https://openalex.org/W1990038735, https://openalex.org/W2145339207, https://openalex.org/W6712181171, https://openalex.org/W2746553466, https://openalex.org/W6732665253, https://openalex.org/W2896121142, https://openalex.org/W2912108923, https://openalex.org/W3009317244, https://openalex.org/W3012943290, https://openalex.org/W3046947688, https://openalex.org/W2999204576, https://openalex.org/W2153966789, https://openalex.org/W1977218919, https://openalex.org/W2291567910, https://openalex.org/W6852035933, https://openalex.org/W2991046523, https://openalex.org/W3167838998, https://openalex.org/W2552178850, https://openalex.org/W4386473229, https://openalex.org/W2166205892, https://openalex.org/W2101643234, https://openalex.org/W2019645207, https://openalex.org/W2070495730, https://openalex.org/W1978470213, https://openalex.org/W2082167858, https://openalex.org/W2512254099, https://openalex.org/W2498422553, https://openalex.org/W2963912378, https://openalex.org/W2743681928, https://openalex.org/W2903142609, https://openalex.org/W2974976221, https://openalex.org/W2945910721, https://openalex.org/W3047988770, https://openalex.org/W2986276296, https://openalex.org/W3110383331, https://openalex.org/W3195411792, https://openalex.org/W3187243030, https://openalex.org/W4285175639, https://openalex.org/W6838811763, https://openalex.org/W4293370731, https://openalex.org/W6741002519, https://openalex.org/W6638018090, https://openalex.org/W6634413486, https://openalex.org/W4323020881, https://openalex.org/W6752963931, https://openalex.org/W6780559895, https://openalex.org/W3046653923, https://openalex.org/W3148526481, https://openalex.org/W3099689767, https://openalex.org/W2811374584, https://openalex.org/W3103559770, https://openalex.org/W3099581246, https://openalex.org/W2736601468, https://openalex.org/W4283821341, https://openalex.org/W4367840085 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 2, 39, 55, 73, 82, 109, 128, 132, 166, 208, 223 |
| abstract_inverted_index.As | 131 |
| abstract_inverted_index.At | 29 |
| abstract_inverted_index.In | 155 |
| abstract_inverted_index.We | 0, 221 |
| abstract_inverted_index.an | 200, 258 |
| abstract_inverted_index.at | 188 |
| abstract_inverted_index.by | 104, 164, 192 |
| abstract_inverted_index.in | 46, 124, 151, 170, 272 |
| abstract_inverted_index.is | 79, 119 |
| abstract_inverted_index.of | 5, 24, 96, 127, 173, 216, 226, 249, 261, 268 |
| abstract_inverted_index.or | 204 |
| abstract_inverted_index.to | 37, 61, 80, 138, 142, 199, 235 |
| abstract_inverted_index.we | 158, 245, 256 |
| abstract_inverted_index.AHT | 117, 162, 185 |
| abstract_inverted_index.The | 58, 77 |
| abstract_inverted_index.and | 98, 239, 270 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.for | 116, 184, 265 |
| abstract_inverted_index.its | 197 |
| abstract_inverted_index.map | 196 |
| abstract_inverted_index.set | 225 |
| abstract_inverted_index.the | 6, 19, 22, 26, 35, 63, 87, 94, 99, 105, 125, 160, 171, 214, 218, 232, 247, 262, 266 |
| abstract_inverted_index.This | 90, 178 |
| abstract_inverted_index.both | 93 |
| abstract_inverted_index.cost | 95, 102 |
| abstract_inverted_index.deep | 139, 174, 210 |
| abstract_inverted_index.each | 30, 52, 189, 194 |
| abstract_inverted_index.even | 123 |
| abstract_inverted_index.from | 18, 49 |
| abstract_inverted_index.goal | 215 |
| abstract_inverted_index.have | 34, 136, 147 |
| abstract_inverted_index.over | 72, 251 |
| abstract_inverted_index.risk | 91 |
| abstract_inverted_index.rule | 203 |
| abstract_inverted_index.step | 191 |
| abstract_inverted_index.that | 85, 229 |
| abstract_inverted_index.this | 156 |
| abstract_inverted_index.time | 31, 190 |
| abstract_inverted_index.upon | 107 |
| abstract_inverted_index.with | 21, 54, 213 |
| abstract_inverted_index.(AHT) | 10 |
| abstract_inverted_index.Bayes | 88, 219 |
| abstract_inverted_index.MARLA | 250, 263 |
| abstract_inverted_index.These | 42 |
| abstract_inverted_index.agent | 195 |
| abstract_inverted_index.drawn | 48 |
| abstract_inverted_index.joint | 100 |
| abstract_inverted_index.learn | 236 |
| abstract_inverted_index.named | 180 |
| abstract_inverted_index.noisy | 16 |
| abstract_inverted_index.novel | 167 |
| abstract_inverted_index.risk. | 89, 220 |
| abstract_inverted_index.rule) | 206 |
| abstract_inverted_index.state | 198 |
| abstract_inverted_index.step, | 32 |
| abstract_inverted_index.task, | 64 |
| abstract_inverted_index.these | 144 |
| abstract_inverted_index.using | 207, 242 |
| abstract_inverted_index.where | 12, 65 |
| abstract_inverted_index.which | 146 |
| abstract_inverted_index.MARLA. | 243 |
| abstract_inverted_index.action | 201 |
| abstract_inverted_index.active | 7 |
| abstract_inverted_index.agent. | 130 |
| abstract_inverted_index.agents | 14, 33, 59, 69, 106 |
| abstract_inverted_index.devise | 81 |
| abstract_inverted_index.gather | 15 |
| abstract_inverted_index.having | 193 |
| abstract_inverted_index.making | 108 |
| abstract_inverted_index.neural | 211 |
| abstract_inverted_index.option | 36 |
| abstract_inverted_index.paper, | 157 |
| abstract_inverted_index.policy | 84 |
| abstract_inverted_index.recent | 134 |
| abstract_inverted_index.result | 45 |
| abstract_inverted_index.rooted | 169 |
| abstract_inverted_index.select | 38 |
| abstract_inverted_index.single | 129 |
| abstract_inverted_index.tackle | 159 |
| abstract_inverted_index.turned | 137 |
| abstract_inverted_index.ability | 234 |
| abstract_inverted_index.action. | 41 |
| abstract_inverted_index.actions | 44 |
| abstract_inverted_index.address | 143 |
| abstract_inverted_index.allowed | 71 |
| abstract_inverted_index.benefit | 267 |
| abstract_inverted_index.between | 68 |
| abstract_inverted_index.context | 126 |
| abstract_inverted_index.correct | 27 |
| abstract_inverted_index.efforts | 135 |
| abstract_inverted_index.enhance | 240 |
| abstract_inverted_index.message | 66 |
| abstract_inverted_index.network | 212 |
| abstract_inverted_index.optimal | 113 |
| abstract_inverted_index.present | 222 |
| abstract_inverted_index.provide | 257 |
| abstract_inverted_index.purpose | 23 |
| abstract_inverted_index.related | 273 |
| abstract_inverted_index.result, | 133 |
| abstract_inverted_index.results | 228 |
| abstract_inverted_index.success | 150 |
| abstract_inverted_index.testing | 9 |
| abstract_inverted_index.trained | 209 |
| abstract_inverted_index.various | 50 |
| abstract_inverted_index.(MARLA), | 186 |
| abstract_inverted_index.Deriving | 112 |
| abstract_inverted_index.Finally, | 255 |
| abstract_inverted_index.Learning | 183 |
| abstract_inverted_index.channel. | 76 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.domains. | 274 |
| abstract_inverted_index.incurred | 103 |
| abstract_inverted_index.learning | 140, 153, 253 |
| abstract_inverted_index.multiple | 13 |
| abstract_inverted_index.operates | 187 |
| abstract_inverted_index.policies | 115 |
| abstract_inverted_index.problem, | 11 |
| abstract_inverted_index.problems | 118 |
| abstract_inverted_index.sampling | 40, 97 |
| abstract_inverted_index.showcase | 231 |
| abstract_inverted_index.specific | 56 |
| abstract_inverted_index.stopping | 205 |
| abstract_inverted_index.terminal | 101 |
| abstract_inverted_index.(sampling | 202 |
| abstract_inverted_index.algorithm | 168 |
| abstract_inverted_index.comprises | 92 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.exchanges | 67 |
| abstract_inverted_index.exhibited | 148 |
| abstract_inverted_index.framework | 172 |
| abstract_inverted_index.generally | 120 |
| abstract_inverted_index.learning. | 177 |
| abstract_inverted_index.minimizes | 86 |
| abstract_inverted_index.objective | 78 |
| abstract_inverted_index.problems, | 145 |
| abstract_inverted_index.accomplish | 62 |
| abstract_inverted_index.algorithm, | 179 |
| abstract_inverted_index.associated | 53 |
| abstract_inverted_index.developers | 271 |
| abstract_inverted_index.framework, | 264 |
| abstract_inverted_index.hypothesis | 8, 110 |
| abstract_inverted_index.minimizing | 217 |
| abstract_inverted_index.scenarios. | 154 |
| abstract_inverted_index.strategies | 238 |
| abstract_inverted_index.structured | 114 |
| abstract_inverted_index.Multi-Agent | 181 |
| abstract_inverted_index.approaches. | 254 |
| abstract_inverted_index.collaborate | 60 |
| abstract_inverted_index.demonstrate | 246 |
| abstract_inverted_index.effectively | 230 |
| abstract_inverted_index.environment | 20 |
| abstract_inverted_index.formulation | 4, 163 |
| abstract_inverted_index.hypothesis. | 28, 57 |
| abstract_inverted_index.identifying | 25 |
| abstract_inverted_index.introducing | 165 |
| abstract_inverted_index.multi-agent | 83, 161, 175 |
| abstract_inverted_index.open-source | 259 |
| abstract_inverted_index.performance | 241 |
| abstract_inverted_index.researchers | 269 |
| abstract_inverted_index.significant | 149 |
| abstract_inverted_index.superiority | 248 |
| abstract_inverted_index.Furthermore, | 244 |
| abstract_inverted_index.declaration. | 111 |
| abstract_inverted_index.experimental | 227 |
| abstract_inverted_index.intractable, | 122 |
| abstract_inverted_index.observations | 17, 47 |
| abstract_inverted_index.rate-limited | 74 |
| abstract_inverted_index.single-agent | 152, 252 |
| abstract_inverted_index.Reinforcement | 182 |
| abstract_inverted_index.collaborative | 237 |
| abstract_inverted_index.comprehensive | 224 |
| abstract_inverted_index.decentralized | 3 |
| abstract_inverted_index.methodologies | 141 |
| abstract_inverted_index.reinforcement | 176 |
| abstract_inverted_index.agents’ | 233 |
| abstract_inverted_index.communications | 75 |
| abstract_inverted_index.distributions, | 51 |
| abstract_inverted_index.implementation | 260 |
| abstract_inverted_index.mathematically | 121 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.74728638 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |