Deep Neural Helmholtz Operators for 3D Elastic Wave Propagation and Inversion Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.09608
Numerical simulations of seismic wave propagation in heterogeneous 3D media are central to investigating subsurface structures and understanding earthquake processes, yet are computationally expensive for large problems. This is particularly problematic for full waveform inversion, which typically involves numerous runs of the forward process. In machine learning there has been considerable recent work in the area of operator learning, with a new class of models called neural operators allowing for data-driven solutions to partial differential equations. Recent works in seismology have shown that when neural operators are adequately trained, they can significantly shorten the compute time for wave propagation. However, the memory required for the 3D time domain equations may be prohibitive. In this study, we show that these limitations can be overcome by solving the wave equations in the frequency domain, also known as the Helmholtz equations, since the solutions for a set of frequencies can be determined in parallel. The 3D Helmholtz neural operator is 40 times more memory-efficient than an equivalent time-domain version. We employ a U-shaped neural operator for 2D and 3D elastic wave modeling, achieving two orders of magnitude acceleration compared to a baseline spectral element method. The neural operator accurately generalizes to variable velocity structures and can be evaluated on denser input meshes than used in the training simulations. We also show that when solving for wavefields strictly on the surface, the accuracy can be significantly improved via a graph neural operator layer. In leveraging automatic differentiation, the proposed method can serve as an alternative to the adjoint-state approach for 3D full-waveform inversion, reducing the computation time by a factor of 350.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.09608
- https://arxiv.org/pdf/2311.09608
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388787750
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388787750Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.09608Digital Object Identifier
- Title
-
Deep Neural Helmholtz Operators for 3D Elastic Wave Propagation and InversionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-16Full publication date if available
- Authors
-
Caifeng Zou, Kamyar Azizzadenesheli, Zachary E. Ross, Robert W. ClaytonList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.09608Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.09608Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.09608Direct OA link when available
- Concepts
-
Helmholtz equation, Helmholtz free energy, Operator (biology), Artificial neural network, Computer science, Polygon mesh, Inversion (geology), Algorithm, Wave equation, Wave propagation, Mathematical analysis, Mathematics, Artificial intelligence, Geology, Physics, Optics, Boundary value problem, Chemistry, Transcription factor, Structural basin, Computer graphics (images), Paleontology, Quantum mechanics, Gene, Biochemistry, RepressorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388787750 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.09608 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.09608 |
| ids.openalex | https://openalex.org/W4388787750 |
| fwci | 0.67815853 |
| type | preprint |
| title | Deep Neural Helmholtz Operators for 3D Elastic Wave Propagation and Inversion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10271 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1908 |
| topics[0].subfield.display_name | Geophysics |
| topics[0].display_name | Seismic Imaging and Inversion Techniques |
| topics[1].id | https://openalex.org/T11757 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Seismic Waves and Analysis |
| topics[2].id | https://openalex.org/T13018 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Seismology and Earthquake Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18591234 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7237554788589478 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860615 |
| concepts[0].display_name | Helmholtz equation |
| concepts[1].id | https://openalex.org/C27592594 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6595916748046875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q865821 |
| concepts[1].display_name | Helmholtz free energy |
| concepts[2].id | https://openalex.org/C17020691 |
| concepts[2].level | 5 |
| concepts[2].score | 0.637580156326294 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[2].display_name | Operator (biology) |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5873570442199707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5487150549888611 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C31487907 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5036904215812683 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1154597 |
| concepts[5].display_name | Polygon mesh |
| concepts[6].id | https://openalex.org/C1893757 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5016341209411621 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[6].display_name | Inversion (geology) |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.48034632205963135 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C59696629 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4536641240119934 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q193846 |
| concepts[8].display_name | Wave equation |
| concepts[9].id | https://openalex.org/C44886760 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44211870431900024 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1758425 |
| concepts[9].display_name | Wave propagation |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2936117649078369 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.26991021633148193 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2232113480567932 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15551969408988953 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.15382400155067444 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11141449213027954 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C182310444 |
| concepts[16].level | 2 |
| concepts[16].score | 0.10130712389945984 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1332643 |
| concepts[16].display_name | Boundary value problem |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C86339819 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[18].display_name | Transcription factor |
| concepts[19].id | https://openalex.org/C109007969 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[19].display_name | Structural basin |
| concepts[20].id | https://openalex.org/C121684516 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[20].display_name | Computer graphics (images) |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C104317684 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[23].display_name | Gene |
| concepts[24].id | https://openalex.org/C55493867 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[24].display_name | Biochemistry |
| concepts[25].id | https://openalex.org/C158448853 |
| concepts[25].level | 4 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[25].display_name | Repressor |
| keywords[0].id | https://openalex.org/keywords/helmholtz-equation |
| keywords[0].score | 0.7237554788589478 |
| keywords[0].display_name | Helmholtz equation |
| keywords[1].id | https://openalex.org/keywords/helmholtz-free-energy |
| keywords[1].score | 0.6595916748046875 |
| keywords[1].display_name | Helmholtz free energy |
| keywords[2].id | https://openalex.org/keywords/operator |
| keywords[2].score | 0.637580156326294 |
| keywords[2].display_name | Operator (biology) |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5873570442199707 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5487150549888611 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/polygon-mesh |
| keywords[5].score | 0.5036904215812683 |
| keywords[5].display_name | Polygon mesh |
| keywords[6].id | https://openalex.org/keywords/inversion |
| keywords[6].score | 0.5016341209411621 |
| keywords[6].display_name | Inversion (geology) |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.48034632205963135 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/wave-equation |
| keywords[8].score | 0.4536641240119934 |
| keywords[8].display_name | Wave equation |
| keywords[9].id | https://openalex.org/keywords/wave-propagation |
| keywords[9].score | 0.44211870431900024 |
| keywords[9].display_name | Wave propagation |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.2936117649078369 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.26991021633148193 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2232113480567932 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/geology |
| keywords[13].score | 0.15551969408988953 |
| keywords[13].display_name | Geology |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.15382400155067444 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/optics |
| keywords[15].score | 0.11141449213027954 |
| keywords[15].display_name | Optics |
| keywords[16].id | https://openalex.org/keywords/boundary-value-problem |
| keywords[16].score | 0.10130712389945984 |
| keywords[16].display_name | Boundary value problem |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.09608 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.09608 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.09608 |
| locations[1].id | doi:10.48550/arxiv.2311.09608 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.09608 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5022648809 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9445-7594 |
| authorships[0].author.display_name | Caifeng Zou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zou, Caifeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038884528 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8507-1868 |
| authorships[1].author.display_name | Kamyar Azizzadenesheli |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Azizzadenesheli, Kamyar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006827123 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6343-8400 |
| authorships[2].author.display_name | Zachary E. Ross |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ross, Zachary E. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085830112 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3323-3508 |
| authorships[3].author.display_name | Robert W. Clayton |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Clayton, Robert W. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.09608 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Neural Helmholtz Operators for 3D Elastic Wave Propagation and Inversion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10271 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1908 |
| primary_topic.subfield.display_name | Geophysics |
| primary_topic.display_name | Seismic Imaging and Inversion Techniques |
| related_works | https://openalex.org/W1557607869, https://openalex.org/W4365420316, https://openalex.org/W3193896743, https://openalex.org/W3176862315, https://openalex.org/W3120022531, https://openalex.org/W2122095750, https://openalex.org/W2045397465, https://openalex.org/W2010309086, https://openalex.org/W3216698492, https://openalex.org/W2953092006 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.09608 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.09608 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.09608 |
| primary_location.id | pmh:oai:arXiv.org:2311.09608 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.09608 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.09608 |
| publication_date | 2023-11-16 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 142, 168, 187, 234, 264 |
| abstract_inverted_index.2D | 173 |
| abstract_inverted_index.3D | 8, 105, 152, 175, 256 |
| abstract_inverted_index.40 | 157 |
| abstract_inverted_index.In | 44, 112, 239 |
| abstract_inverted_index.We | 166, 215 |
| abstract_inverted_index.an | 162, 249 |
| abstract_inverted_index.as | 134, 248 |
| abstract_inverted_index.be | 110, 121, 147, 203, 230 |
| abstract_inverted_index.by | 123, 263 |
| abstract_inverted_index.in | 6, 53, 78, 128, 149, 211 |
| abstract_inverted_index.is | 28, 156 |
| abstract_inverted_index.of | 2, 40, 56, 63, 144, 182, 266 |
| abstract_inverted_index.on | 205, 224 |
| abstract_inverted_index.to | 12, 72, 186, 197, 251 |
| abstract_inverted_index.we | 115 |
| abstract_inverted_index.The | 151, 192 |
| abstract_inverted_index.and | 16, 174, 201 |
| abstract_inverted_index.are | 10, 21, 86 |
| abstract_inverted_index.can | 90, 120, 146, 202, 229, 246 |
| abstract_inverted_index.for | 24, 31, 69, 96, 103, 141, 172, 221, 255 |
| abstract_inverted_index.has | 48 |
| abstract_inverted_index.may | 109 |
| abstract_inverted_index.new | 61 |
| abstract_inverted_index.set | 143 |
| abstract_inverted_index.the | 41, 54, 93, 100, 104, 125, 129, 135, 139, 212, 225, 227, 243, 252, 260 |
| abstract_inverted_index.two | 180 |
| abstract_inverted_index.via | 233 |
| abstract_inverted_index.yet | 20 |
| abstract_inverted_index.350. | 267 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.also | 132, 216 |
| abstract_inverted_index.area | 55 |
| abstract_inverted_index.been | 49 |
| abstract_inverted_index.full | 32 |
| abstract_inverted_index.have | 80 |
| abstract_inverted_index.more | 159 |
| abstract_inverted_index.runs | 39 |
| abstract_inverted_index.show | 116, 217 |
| abstract_inverted_index.than | 161, 209 |
| abstract_inverted_index.that | 82, 117, 218 |
| abstract_inverted_index.they | 89 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.time | 95, 106, 262 |
| abstract_inverted_index.used | 210 |
| abstract_inverted_index.wave | 4, 97, 126, 177 |
| abstract_inverted_index.when | 83, 219 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.work | 52 |
| abstract_inverted_index.class | 62 |
| abstract_inverted_index.graph | 235 |
| abstract_inverted_index.input | 207 |
| abstract_inverted_index.known | 133 |
| abstract_inverted_index.large | 25 |
| abstract_inverted_index.media | 9 |
| abstract_inverted_index.serve | 247 |
| abstract_inverted_index.shown | 81 |
| abstract_inverted_index.since | 138 |
| abstract_inverted_index.there | 47 |
| abstract_inverted_index.these | 118 |
| abstract_inverted_index.times | 158 |
| abstract_inverted_index.which | 35 |
| abstract_inverted_index.works | 77 |
| abstract_inverted_index.Recent | 76 |
| abstract_inverted_index.called | 65 |
| abstract_inverted_index.denser | 206 |
| abstract_inverted_index.domain | 107 |
| abstract_inverted_index.employ | 167 |
| abstract_inverted_index.factor | 265 |
| abstract_inverted_index.layer. | 238 |
| abstract_inverted_index.memory | 101 |
| abstract_inverted_index.meshes | 208 |
| abstract_inverted_index.method | 245 |
| abstract_inverted_index.models | 64 |
| abstract_inverted_index.neural | 66, 84, 154, 170, 193, 236 |
| abstract_inverted_index.orders | 181 |
| abstract_inverted_index.recent | 51 |
| abstract_inverted_index.study, | 114 |
| abstract_inverted_index.central | 11 |
| abstract_inverted_index.compute | 94 |
| abstract_inverted_index.domain, | 131 |
| abstract_inverted_index.elastic | 176 |
| abstract_inverted_index.element | 190 |
| abstract_inverted_index.forward | 42 |
| abstract_inverted_index.machine | 45 |
| abstract_inverted_index.method. | 191 |
| abstract_inverted_index.partial | 73 |
| abstract_inverted_index.seismic | 3 |
| abstract_inverted_index.shorten | 92 |
| abstract_inverted_index.solving | 124, 220 |
| abstract_inverted_index.However, | 99 |
| abstract_inverted_index.U-shaped | 169 |
| abstract_inverted_index.accuracy | 228 |
| abstract_inverted_index.allowing | 68 |
| abstract_inverted_index.approach | 254 |
| abstract_inverted_index.baseline | 188 |
| abstract_inverted_index.compared | 185 |
| abstract_inverted_index.improved | 232 |
| abstract_inverted_index.involves | 37 |
| abstract_inverted_index.learning | 46 |
| abstract_inverted_index.numerous | 38 |
| abstract_inverted_index.operator | 57, 155, 171, 194, 237 |
| abstract_inverted_index.overcome | 122 |
| abstract_inverted_index.process. | 43 |
| abstract_inverted_index.proposed | 244 |
| abstract_inverted_index.reducing | 259 |
| abstract_inverted_index.required | 102 |
| abstract_inverted_index.spectral | 189 |
| abstract_inverted_index.strictly | 223 |
| abstract_inverted_index.surface, | 226 |
| abstract_inverted_index.trained, | 88 |
| abstract_inverted_index.training | 213 |
| abstract_inverted_index.variable | 198 |
| abstract_inverted_index.velocity | 199 |
| abstract_inverted_index.version. | 165 |
| abstract_inverted_index.waveform | 33 |
| abstract_inverted_index.Helmholtz | 136, 153 |
| abstract_inverted_index.Numerical | 0 |
| abstract_inverted_index.achieving | 179 |
| abstract_inverted_index.automatic | 241 |
| abstract_inverted_index.equations | 108, 127 |
| abstract_inverted_index.evaluated | 204 |
| abstract_inverted_index.expensive | 23 |
| abstract_inverted_index.frequency | 130 |
| abstract_inverted_index.learning, | 58 |
| abstract_inverted_index.magnitude | 183 |
| abstract_inverted_index.modeling, | 178 |
| abstract_inverted_index.operators | 67, 85 |
| abstract_inverted_index.parallel. | 150 |
| abstract_inverted_index.problems. | 26 |
| abstract_inverted_index.solutions | 71, 140 |
| abstract_inverted_index.typically | 36 |
| abstract_inverted_index.accurately | 195 |
| abstract_inverted_index.adequately | 87 |
| abstract_inverted_index.determined | 148 |
| abstract_inverted_index.earthquake | 18 |
| abstract_inverted_index.equations, | 137 |
| abstract_inverted_index.equations. | 75 |
| abstract_inverted_index.equivalent | 163 |
| abstract_inverted_index.inversion, | 34, 258 |
| abstract_inverted_index.leveraging | 240 |
| abstract_inverted_index.processes, | 19 |
| abstract_inverted_index.seismology | 79 |
| abstract_inverted_index.structures | 15, 200 |
| abstract_inverted_index.subsurface | 14 |
| abstract_inverted_index.wavefields | 222 |
| abstract_inverted_index.alternative | 250 |
| abstract_inverted_index.computation | 261 |
| abstract_inverted_index.data-driven | 70 |
| abstract_inverted_index.frequencies | 145 |
| abstract_inverted_index.generalizes | 196 |
| abstract_inverted_index.limitations | 119 |
| abstract_inverted_index.problematic | 30 |
| abstract_inverted_index.propagation | 5 |
| abstract_inverted_index.simulations | 1 |
| abstract_inverted_index.time-domain | 164 |
| abstract_inverted_index.acceleration | 184 |
| abstract_inverted_index.considerable | 50 |
| abstract_inverted_index.differential | 74 |
| abstract_inverted_index.particularly | 29 |
| abstract_inverted_index.prohibitive. | 111 |
| abstract_inverted_index.propagation. | 98 |
| abstract_inverted_index.simulations. | 214 |
| abstract_inverted_index.adjoint-state | 253 |
| abstract_inverted_index.full-waveform | 257 |
| abstract_inverted_index.heterogeneous | 7 |
| abstract_inverted_index.investigating | 13 |
| abstract_inverted_index.significantly | 91, 231 |
| abstract_inverted_index.understanding | 17 |
| abstract_inverted_index.computationally | 22 |
| abstract_inverted_index.differentiation, | 242 |
| abstract_inverted_index.memory-efficient | 160 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.68084057 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |