Deep Neural Network Based Vehicle Detection and Classification of Aerial Images Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.32604/iasc.2022.024812
The detection of the objects in the ariel image has a significant impact on the field of parking space management, traffic management activities and surveillance systems. Traditional vehicle detection algorithms have some limitations as these algorithms are not working with the complex background and with the small size of object in bigger scenes. It is observed that researchers are facing numerous problems in vehicle detection and classification, i.e., complicated background, the vehicle’s modest size, other objects with similar visual appearances are not correctly addressed. A robust algorithm for vehicle detection and classification has been proposed to overcome the limitation of existing techniques in this research work. We propose an algorithm based on Convolutional Neural Network (CNN) to detect the vehicle and classify it into light and heavy vehicles. The performance of this approach was evaluated using a variety of benchmark datasets, including VEDAI, VIVID, UC Merced Land Use, and the Self database. To validate the results, various performance parameters such as accuracy, precision, recall, error, and F1-Score were calculated. The results suggest that the proposed technique has a higher detection rate, which is approximately 92.06% on the VEDAI dataset, 95.73% on the VIVID dataset, 90.17% on the UC Merced Land dataset, and 96.16% on the Self dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/iasc.2022.024812
- https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdf
- OA Status
- hybrid
- Cited By
- 83
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226458968
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226458968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/iasc.2022.024812Digital Object Identifier
- Title
-
Deep Neural Network Based Vehicle Detection and Classification of Aerial ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Sandeep Kumar, Arpit Jain, Shilpa Rani, Hammam Alshazly, Sahar Ahmed Idris, Sami BourouisList of authors in order
- Landing page
-
https://doi.org/10.32604/iasc.2022.024812Publisher landing page
- PDF URL
-
https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdfDirect OA link when available
- Concepts
-
Computer science, Convolutional neural network, Benchmark (surveying), Artificial intelligence, Object detection, Field (mathematics), Precision and recall, Pattern recognition (psychology), Deep learning, Artificial neural network, Computer vision, Machine learning, Geography, Mathematics, Cartography, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
83Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22, 2024: 34, 2023: 18, 2022: 9Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226458968 |
|---|---|
| doi | https://doi.org/10.32604/iasc.2022.024812 |
| ids.doi | https://doi.org/10.32604/iasc.2022.024812 |
| ids.openalex | https://openalex.org/W4226458968 |
| fwci | 10.2747195 |
| type | article |
| title | Deep Neural Network Based Vehicle Detection and Classification of Aerial Images |
| biblio.issue | 1 |
| biblio.volume | 34 |
| biblio.last_page | 131 |
| biblio.first_page | 119 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12707 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Vehicle License Plate Recognition |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9993000030517578 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7408376932144165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7109964489936829 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7062541246414185 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6444764137268066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6221367716789246 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5221683979034424 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C81669768 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45725032687187195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[6].display_name | Precision and recall |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4565512537956238 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43987375497817993 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42532944679260254 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33256396651268005 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32827621698379517 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09811615943908691 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0788709819316864 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C58640448 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07231435179710388 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[14].display_name | Cartography |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7408376932144165 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7109964489936829 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.7062541246414185 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6444764137268066 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.6221367716789246 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.5221683979034424 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/precision-and-recall |
| keywords[6].score | 0.45725032687187195 |
| keywords[6].display_name | Precision and recall |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4565512537956238 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.43987375497817993 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.42532944679260254 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.33256396651268005 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.32827621698379517 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.09811615943908691 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.0788709819316864 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/cartography |
| keywords[14].score | 0.07231435179710388 |
| keywords[14].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.32604/iasc.2022.024812 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S40639465 |
| locations[0].source.issn | 1079-8587, 2326-005X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1079-8587 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Intelligent Automation & Soft Computing |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Intelligent Automation & Soft Computing |
| locations[0].landing_page_url | https://doi.org/10.32604/iasc.2022.024812 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5071404767 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4752-7884 |
| authorships[0].author.display_name | Sandeep Kumar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I875944469 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India |
| authorships[0].institutions[0].id | https://openalex.org/I875944469 |
| authorships[0].institutions[0].ror | https://ror.org/02k949197 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I875944469 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Koneru Lakshmaiah Education Foundation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sandeep Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India |
| authorships[1].author.id | https://openalex.org/A5075344903 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2325-5893 |
| authorships[1].author.display_name | Arpit Jain |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134705546 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Engineering & Computer Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India |
| authorships[1].institutions[0].id | https://openalex.org/I134705546 |
| authorships[1].institutions[0].ror | https://ror.org/04vkd2013 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I134705546 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Teerthanker Mahaveer University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arpit Jain |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Faculty of Engineering & Computer Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India |
| authorships[2].author.id | https://openalex.org/A5085170627 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shilpa Rani |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4400573169 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Neil Gogte Institute of Technology, Hyderabad, India |
| authorships[2].institutions[0].id | https://openalex.org/I4400573169 |
| authorships[2].institutions[0].ror | https://ror.org/04ytecw04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4400573169 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | KLS Gogte Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shilpa Rani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Neil Gogte Institute of Technology, Hyderabad, India |
| authorships[3].author.id | https://openalex.org/A5035598584 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9942-8642 |
| authorships[3].author.display_name | Hammam Alshazly |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189575948 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt |
| authorships[3].institutions[0].id | https://openalex.org/I189575948 |
| authorships[3].institutions[0].ror | https://ror.org/00jxshx33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I189575948 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | South Valley University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hammam Alshazly |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt |
| authorships[4].author.id | https://openalex.org/A5088981953 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4282-4679 |
| authorships[4].author.display_name | Sahar Ahmed Idris |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Industrial Engineering, King Khalid University, Abha, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I82952536 |
| authorships[4].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Khalid University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sahar Ahmed Idris |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Industrial Engineering, King Khalid University, Abha, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5024097894 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6638-7039 |
| authorships[5].author.display_name | Sami Bourouis |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I179331831 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I179331831 |
| authorships[5].institutions[0].ror | https://ror.org/014g1a453 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I179331831 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Taif University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sami Bourouis |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Neural Network Based Vehicle Detection and Classification of Aerial Images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W4390721878, https://openalex.org/W2949096641, https://openalex.org/W2969228573, https://openalex.org/W2970686063, https://openalex.org/W4320729701, https://openalex.org/W2963690996 |
| cited_by_count | 83 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 34 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 18 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/iasc.2022.024812 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S40639465 |
| best_oa_location.source.issn | 1079-8587, 2326-005X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1079-8587 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Intelligent Automation & Soft Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Intelligent Automation & Soft Computing |
| best_oa_location.landing_page_url | https://doi.org/10.32604/iasc.2022.024812 |
| primary_location.id | doi:10.32604/iasc.2022.024812 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S40639465 |
| primary_location.source.issn | 1079-8587, 2326-005X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1079-8587 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Intelligent Automation & Soft Computing |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://file.techscience.com/ueditor/files/iasc/TSP_IASC-34-1/TSP_IASC_24812/TSP_IASC_24812.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Intelligent Automation & Soft Computing |
| primary_location.landing_page_url | https://doi.org/10.32604/iasc.2022.024812 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6768654094, https://openalex.org/W3109228396, https://openalex.org/W6767574060, https://openalex.org/W2879675776, https://openalex.org/W3086084680, https://openalex.org/W2976365704, https://openalex.org/W3196859148, https://openalex.org/W3192646885, https://openalex.org/W3190059072, https://openalex.org/W3104004606, https://openalex.org/W6757448529, https://openalex.org/W3095320185, https://openalex.org/W6758260265, https://openalex.org/W3119805519, https://openalex.org/W3110585990, https://openalex.org/W6772706794, https://openalex.org/W6687483927, https://openalex.org/W1921523184, https://openalex.org/W6628973269, https://openalex.org/W2176924101, https://openalex.org/W6645519200, https://openalex.org/W6748138603, https://openalex.org/W6782114803, https://openalex.org/W6754499088, https://openalex.org/W6741020951, https://openalex.org/W6754457323, https://openalex.org/W6760460262, https://openalex.org/W6767886784, https://openalex.org/W6731417388 |
| referenced_works_count | 29 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 10, 136, 177 |
| abstract_inverted_index.It | 53 |
| abstract_inverted_index.To | 152 |
| abstract_inverted_index.UC | 144, 197 |
| abstract_inverted_index.We | 106 |
| abstract_inverted_index.an | 108 |
| abstract_inverted_index.as | 33, 160 |
| abstract_inverted_index.in | 5, 50, 62, 102 |
| abstract_inverted_index.is | 54, 182 |
| abstract_inverted_index.it | 122 |
| abstract_inverted_index.of | 2, 16, 48, 99, 130, 138 |
| abstract_inverted_index.on | 13, 111, 185, 190, 195, 203 |
| abstract_inverted_index.to | 95, 116 |
| abstract_inverted_index.The | 0, 128, 169 |
| abstract_inverted_index.and | 23, 43, 65, 90, 120, 125, 148, 165, 201 |
| abstract_inverted_index.are | 36, 58, 80 |
| abstract_inverted_index.for | 87 |
| abstract_inverted_index.has | 9, 92, 176 |
| abstract_inverted_index.not | 37, 81 |
| abstract_inverted_index.the | 3, 6, 14, 40, 45, 70, 97, 118, 149, 154, 173, 186, 191, 196, 204 |
| abstract_inverted_index.was | 133 |
| abstract_inverted_index.Land | 146, 199 |
| abstract_inverted_index.Self | 150, 205 |
| abstract_inverted_index.Use, | 147 |
| abstract_inverted_index.been | 93 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.into | 123 |
| abstract_inverted_index.size | 47 |
| abstract_inverted_index.some | 31 |
| abstract_inverted_index.such | 159 |
| abstract_inverted_index.that | 56, 172 |
| abstract_inverted_index.this | 103, 131 |
| abstract_inverted_index.were | 167 |
| abstract_inverted_index.with | 39, 44, 76 |
| abstract_inverted_index.(CNN) | 115 |
| abstract_inverted_index.VEDAI | 187 |
| abstract_inverted_index.VIVID | 192 |
| abstract_inverted_index.ariel | 7 |
| abstract_inverted_index.based | 110 |
| abstract_inverted_index.field | 15 |
| abstract_inverted_index.heavy | 126 |
| abstract_inverted_index.i.e., | 67 |
| abstract_inverted_index.image | 8 |
| abstract_inverted_index.light | 124 |
| abstract_inverted_index.other | 74 |
| abstract_inverted_index.rate, | 180 |
| abstract_inverted_index.size, | 73 |
| abstract_inverted_index.small | 46 |
| abstract_inverted_index.space | 18 |
| abstract_inverted_index.these | 34 |
| abstract_inverted_index.using | 135 |
| abstract_inverted_index.which | 181 |
| abstract_inverted_index.work. | 105 |
| abstract_inverted_index.90.17% | 194 |
| abstract_inverted_index.92.06% | 184 |
| abstract_inverted_index.95.73% | 189 |
| abstract_inverted_index.96.16% | 202 |
| abstract_inverted_index.Merced | 145, 198 |
| abstract_inverted_index.Neural | 113 |
| abstract_inverted_index.VEDAI, | 142 |
| abstract_inverted_index.VIVID, | 143 |
| abstract_inverted_index.bigger | 51 |
| abstract_inverted_index.detect | 117 |
| abstract_inverted_index.error, | 164 |
| abstract_inverted_index.facing | 59 |
| abstract_inverted_index.higher | 178 |
| abstract_inverted_index.impact | 12 |
| abstract_inverted_index.modest | 72 |
| abstract_inverted_index.object | 49 |
| abstract_inverted_index.robust | 85 |
| abstract_inverted_index.visual | 78 |
| abstract_inverted_index.Network | 114 |
| abstract_inverted_index.complex | 41 |
| abstract_inverted_index.objects | 4, 75 |
| abstract_inverted_index.parking | 17 |
| abstract_inverted_index.propose | 107 |
| abstract_inverted_index.recall, | 163 |
| abstract_inverted_index.results | 170 |
| abstract_inverted_index.scenes. | 52 |
| abstract_inverted_index.similar | 77 |
| abstract_inverted_index.suggest | 171 |
| abstract_inverted_index.traffic | 20 |
| abstract_inverted_index.variety | 137 |
| abstract_inverted_index.various | 156 |
| abstract_inverted_index.vehicle | 27, 63, 88, 119 |
| abstract_inverted_index.working | 38 |
| abstract_inverted_index.F1-Score | 166 |
| abstract_inverted_index.approach | 132 |
| abstract_inverted_index.classify | 121 |
| abstract_inverted_index.dataset, | 188, 193, 200 |
| abstract_inverted_index.dataset. | 206 |
| abstract_inverted_index.existing | 100 |
| abstract_inverted_index.numerous | 60 |
| abstract_inverted_index.observed | 55 |
| abstract_inverted_index.overcome | 96 |
| abstract_inverted_index.problems | 61 |
| abstract_inverted_index.proposed | 94, 174 |
| abstract_inverted_index.research | 104 |
| abstract_inverted_index.results, | 155 |
| abstract_inverted_index.systems. | 25 |
| abstract_inverted_index.validate | 153 |
| abstract_inverted_index.accuracy, | 161 |
| abstract_inverted_index.algorithm | 86, 109 |
| abstract_inverted_index.benchmark | 139 |
| abstract_inverted_index.correctly | 82 |
| abstract_inverted_index.database. | 151 |
| abstract_inverted_index.datasets, | 140 |
| abstract_inverted_index.detection | 1, 28, 64, 89, 179 |
| abstract_inverted_index.evaluated | 134 |
| abstract_inverted_index.including | 141 |
| abstract_inverted_index.technique | 175 |
| abstract_inverted_index.vehicles. | 127 |
| abstract_inverted_index.activities | 22 |
| abstract_inverted_index.addressed. | 83 |
| abstract_inverted_index.algorithms | 29, 35 |
| abstract_inverted_index.background | 42 |
| abstract_inverted_index.limitation | 98 |
| abstract_inverted_index.management | 21 |
| abstract_inverted_index.parameters | 158 |
| abstract_inverted_index.precision, | 162 |
| abstract_inverted_index.techniques | 101 |
| abstract_inverted_index.Traditional | 26 |
| abstract_inverted_index.appearances | 79 |
| abstract_inverted_index.background, | 69 |
| abstract_inverted_index.calculated. | 168 |
| abstract_inverted_index.complicated | 68 |
| abstract_inverted_index.limitations | 32 |
| abstract_inverted_index.management, | 19 |
| abstract_inverted_index.performance | 129, 157 |
| abstract_inverted_index.researchers | 57 |
| abstract_inverted_index.significant | 11 |
| abstract_inverted_index.vehicle’s | 71 |
| abstract_inverted_index.surveillance | 24 |
| abstract_inverted_index.Convolutional | 112 |
| abstract_inverted_index.approximately | 183 |
| abstract_inverted_index.classification | 91 |
| abstract_inverted_index.classification, | 66 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5075344903 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I134705546 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.98721855 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |