Deep Neural Networks based Meta-Learning for Network Intrusion Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.09394
The digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks. Designing an intrusion detection system to ensure security of the industrial ecosystem is difficult as network traffic encompasses various attack types, including new and evolving ones with minor changes. The data used to construct a predictive model for computer networks has a skewed class distribution and limited representation of attack types, which differ from real network traffic. These limitations result in dataset shift, negatively impacting the machine learning models' predictive abilities and reducing the detection rate against novel attacks. To address the challenges, we propose a novel deep neural network based Meta-Learning framework; INformation FUsion and Stacking Ensemble (INFUSE) for network intrusion detection. First, a hybrid feature space is created by integrating decision and feature spaces. Five different classifiers are utilized to generate a pool of decision spaces. The feature space is then enriched through a deep sparse autoencoder that learns the semantic relationships between attacks. Finally, the deep Meta-Learner acts as an ensemble combiner to analyze the hybrid feature space and make a final decision. Our evaluation on stringent benchmark datasets and comparison to existing techniques showed the effectiveness of INFUSE with an F-Score of 0.91, Accuracy of 91.6%, and Recall of 0.94 on the Test+ dataset, and an F-Score of 0.91, Accuracy of 85.6%, and Recall of 0.87 on the stringent Test-21 dataset. These promising results indicate the strong generalization capability and the potential to detect network attacks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.09394
- https://arxiv.org/pdf/2302.09394
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321472257
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321472257Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.09394Digital Object Identifier
- Title
-
Deep Neural Networks based Meta-Learning for Network Intrusion DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-18Full publication date if available
- Authors
-
Anabia Sohail, Bibi Ayisha, Irfan Hameed, Muhammad Mohsin Zafar, Asifullah KhanList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.09394Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.09394Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.09394Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Autoencoder, Benchmark (surveying), Ensemble learning, Deep learning, Artificial neural network, Feature (linguistics), Feature vector, Intrusion detection system, Data mining, Pattern recognition (psychology), Geography, Philosophy, Linguistics, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321472257 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.09394 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.09394 |
| ids.openalex | https://openalex.org/W4321472257 |
| fwci | |
| type | preprint |
| title | Deep Neural Networks based Meta-Learning for Network Intrusion Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9739999771118164 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9417999982833862 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7540028095245361 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7007958292961121 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6577569842338562 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C101738243 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6066814064979553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[3].display_name | Autoencoder |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5115616917610168 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C45942800 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4865211844444275 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[5].display_name | Ensemble learning |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47194427251815796 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47147348523139954 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4551839530467987 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C83665646 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4432083070278168 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[9].display_name | Feature vector |
| concepts[10].id | https://openalex.org/C35525427 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4303874373435974 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[10].display_name | Intrusion detection system |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37362051010131836 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3299417793750763 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7540028095245361 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7007958292961121 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6577569842338562 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/autoencoder |
| keywords[3].score | 0.6066814064979553 |
| keywords[3].display_name | Autoencoder |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.5115616917610168 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/ensemble-learning |
| keywords[5].score | 0.4865211844444275 |
| keywords[5].display_name | Ensemble learning |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.47194427251815796 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.47147348523139954 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.4551839530467987 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/feature-vector |
| keywords[9].score | 0.4432083070278168 |
| keywords[9].display_name | Feature vector |
| keywords[10].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[10].score | 0.4303874373435974 |
| keywords[10].display_name | Intrusion detection system |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.37362051010131836 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3299417793750763 |
| keywords[12].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.09394 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.09394 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.09394 |
| locations[1].id | doi:10.48550/arxiv.2302.09394 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.09394 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026855523 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2961-6098 |
| authorships[0].author.display_name | Anabia Sohail |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sohail, Anabia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047375385 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bibi Ayisha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ayisha, Bibi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073088592 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1484-6133 |
| authorships[2].author.display_name | Irfan Hameed |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hameed, Irfan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021151609 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2088-3985 |
| authorships[3].author.display_name | Muhammad Mohsin Zafar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zafar, Muhammad Mohsin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083112369 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2039-5305 |
| authorships[4].author.display_name | Asifullah Khan |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Khan, Asifullah |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.09394 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Neural Networks based Meta-Learning for Network Intrusion Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2159052453, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W2145836866, https://openalex.org/W2803255133, https://openalex.org/W2909431601 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.09394 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.09394 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.09394 |
| primary_location.id | pmh:oai:arXiv.org:2302.09394 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.09394 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.09394 |
| publication_date | 2023-02-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 60, 104, 123, 142, 154, 182 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.an | 20, 171, 202, 218 |
| abstract_inverted_index.as | 33, 170 |
| abstract_inverted_index.by | 129 |
| abstract_inverted_index.in | 79 |
| abstract_inverted_index.is | 31, 127, 150 |
| abstract_inverted_index.of | 2, 5, 16, 27, 67, 144, 199, 204, 207, 211, 220, 223, 227 |
| abstract_inverted_index.on | 187, 213, 229 |
| abstract_inverted_index.to | 24, 51, 140, 174, 193, 245 |
| abstract_inverted_index.we | 102 |
| abstract_inverted_index.Our | 185 |
| abstract_inverted_index.The | 0, 48, 147 |
| abstract_inverted_index.and | 7, 42, 64, 90, 114, 132, 180, 191, 209, 217, 225, 242 |
| abstract_inverted_index.are | 138 |
| abstract_inverted_index.for | 56, 118 |
| abstract_inverted_index.has | 59 |
| abstract_inverted_index.new | 41 |
| abstract_inverted_index.the | 14, 28, 84, 92, 100, 160, 166, 176, 197, 214, 230, 238, 243 |
| abstract_inverted_index.0.87 | 228 |
| abstract_inverted_index.0.94 | 212 |
| abstract_inverted_index.Five | 135 |
| abstract_inverted_index.acts | 169 |
| abstract_inverted_index.data | 49 |
| abstract_inverted_index.deep | 106, 155, 167 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.make | 181 |
| abstract_inverted_index.ones | 44 |
| abstract_inverted_index.pool | 143 |
| abstract_inverted_index.rate | 94 |
| abstract_inverted_index.real | 73 |
| abstract_inverted_index.risk | 15 |
| abstract_inverted_index.that | 158 |
| abstract_inverted_index.then | 151 |
| abstract_inverted_index.used | 50 |
| abstract_inverted_index.with | 45, 201 |
| abstract_inverted_index.0.91, | 205, 221 |
| abstract_inverted_index.Test+ | 215 |
| abstract_inverted_index.These | 76, 234 |
| abstract_inverted_index.among | 9 |
| abstract_inverted_index.based | 109 |
| abstract_inverted_index.class | 62 |
| abstract_inverted_index.final | 183 |
| abstract_inverted_index.minor | 46 |
| abstract_inverted_index.model | 55 |
| abstract_inverted_index.novel | 96, 105 |
| abstract_inverted_index.space | 126, 149, 179 |
| abstract_inverted_index.which | 70 |
| abstract_inverted_index.85.6%, | 224 |
| abstract_inverted_index.91.6%, | 208 |
| abstract_inverted_index.FUsion | 113 |
| abstract_inverted_index.First, | 122 |
| abstract_inverted_index.INFUSE | 200 |
| abstract_inverted_index.Recall | 210, 226 |
| abstract_inverted_index.attack | 38, 68 |
| abstract_inverted_index.detect | 246 |
| abstract_inverted_index.differ | 71 |
| abstract_inverted_index.ensure | 25 |
| abstract_inverted_index.hybrid | 124, 177 |
| abstract_inverted_index.learns | 159 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.result | 78 |
| abstract_inverted_index.shift, | 81 |
| abstract_inverted_index.showed | 196 |
| abstract_inverted_index.skewed | 61 |
| abstract_inverted_index.sparse | 156 |
| abstract_inverted_index.strong | 239 |
| abstract_inverted_index.system | 23 |
| abstract_inverted_index.types, | 39, 69 |
| abstract_inverted_index.F-Score | 203, 219 |
| abstract_inverted_index.Test-21 | 232 |
| abstract_inverted_index.address | 99 |
| abstract_inverted_index.against | 95 |
| abstract_inverted_index.analyze | 175 |
| abstract_inverted_index.between | 163 |
| abstract_inverted_index.created | 128 |
| abstract_inverted_index.dataset | 80 |
| abstract_inverted_index.feature | 125, 133, 148, 178 |
| abstract_inverted_index.limited | 65 |
| abstract_inverted_index.machine | 85 |
| abstract_inverted_index.models' | 87 |
| abstract_inverted_index.network | 17, 34, 74, 108, 119, 247 |
| abstract_inverted_index.propose | 103 |
| abstract_inverted_index.results | 236 |
| abstract_inverted_index.spaces. | 134, 146 |
| abstract_inverted_index.through | 153 |
| abstract_inverted_index.traffic | 35 |
| abstract_inverted_index.various | 37 |
| abstract_inverted_index.(INFUSE) | 117 |
| abstract_inverted_index.Accuracy | 206, 222 |
| abstract_inverted_index.Ensemble | 116 |
| abstract_inverted_index.Finally, | 165 |
| abstract_inverted_index.Stacking | 115 |
| abstract_inverted_index.attacks. | 18, 97, 164, 248 |
| abstract_inverted_index.changes. | 47 |
| abstract_inverted_index.combiner | 173 |
| abstract_inverted_index.computer | 57 |
| abstract_inverted_index.dataset, | 216 |
| abstract_inverted_index.dataset. | 233 |
| abstract_inverted_index.datasets | 190 |
| abstract_inverted_index.decision | 131, 145 |
| abstract_inverted_index.enriched | 152 |
| abstract_inverted_index.ensemble | 172 |
| abstract_inverted_index.evolving | 43 |
| abstract_inverted_index.existing | 194 |
| abstract_inverted_index.generate | 141 |
| abstract_inverted_index.indicate | 237 |
| abstract_inverted_index.industry | 6 |
| abstract_inverted_index.learning | 86 |
| abstract_inverted_index.networks | 11, 58 |
| abstract_inverted_index.reducing | 91 |
| abstract_inverted_index.security | 26 |
| abstract_inverted_index.semantic | 161 |
| abstract_inverted_index.traffic. | 75 |
| abstract_inverted_index.utilized | 139 |
| abstract_inverted_index.Designing | 19 |
| abstract_inverted_index.abilities | 89 |
| abstract_inverted_index.benchmark | 189 |
| abstract_inverted_index.construct | 52 |
| abstract_inverted_index.decision. | 184 |
| abstract_inverted_index.detection | 22, 93 |
| abstract_inverted_index.different | 3, 136 |
| abstract_inverted_index.difficult | 32 |
| abstract_inverted_index.ecosystem | 30 |
| abstract_inverted_index.impacting | 83 |
| abstract_inverted_index.including | 40 |
| abstract_inverted_index.increased | 13 |
| abstract_inverted_index.intrusion | 21, 120 |
| abstract_inverted_index.potential | 244 |
| abstract_inverted_index.promising | 235 |
| abstract_inverted_index.stringent | 188, 231 |
| abstract_inverted_index.capability | 241 |
| abstract_inverted_index.comparison | 192 |
| abstract_inverted_index.components | 4 |
| abstract_inverted_index.detection. | 121 |
| abstract_inverted_index.evaluation | 186 |
| abstract_inverted_index.framework; | 111 |
| abstract_inverted_index.indigenous | 10 |
| abstract_inverted_index.industrial | 29 |
| abstract_inverted_index.negatively | 82 |
| abstract_inverted_index.predictive | 54, 88 |
| abstract_inverted_index.techniques | 195 |
| abstract_inverted_index.INformation | 112 |
| abstract_inverted_index.autoencoder | 157 |
| abstract_inverted_index.challenges, | 101 |
| abstract_inverted_index.classifiers | 137 |
| abstract_inverted_index.encompasses | 36 |
| abstract_inverted_index.integrating | 130 |
| abstract_inverted_index.limitations | 77 |
| abstract_inverted_index.Meta-Learner | 168 |
| abstract_inverted_index.digitization | 1 |
| abstract_inverted_index.distribution | 63 |
| abstract_inverted_index.Meta-Learning | 110 |
| abstract_inverted_index.effectiveness | 198 |
| abstract_inverted_index.relationships | 162 |
| abstract_inverted_index.generalization | 240 |
| abstract_inverted_index.representation | 66 |
| abstract_inverted_index.inter-connectivity | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |