Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.02234
Friction is one of the cruxes of hydrodynamic modeling; flood conditions are highly sensitive to the Friction Factors (FFs) used to calculate momentum losses. However, empirical FFs are challenging to measure because they require laboratory experiments. Flood models often rely on surrogate observations (such as land use) to estimate FFs, introducing uncertainty. This research presents a laboratory-trained Deep Neural Network (DNN), trained using flume experiments with data augmentation techniques, to measure Manning's n based on Point Cloud data. The DNN was deployed on real-world lidar Point Clouds to directly measure Manning's n under regulatory and extreme storm events, showing improved prediction capabilities in both 1D and 2D hydrodynamic models. For 1D models, the lidar values decreased differences with regulatory models for in-channel water depth when compared to land cover values. For 1D/2D coupled models, the lidar values produced better agreement with flood extents measured from airborne imagery, while better matching flood insurance claim data for Hurricane Harvey. In both 1D and 1D/2D coupled models, lidar resulted in better agreement with validation gauges. For these reasons, the lidar measurements of Manning's n were found to improve both regulatory models and forecasts for extreme storm events, while simultaneously providing a pathway to standardize the measurement of FFs. Changing FFs significantly affected fluvial and pluvial flood models, while surge flooding was generally unaffected. Downstream flow conditions were found to change the importance of FFs to fluvial models, advancing the literature of friction in flood models. This research introduces a reliable, repeatable, and readily-accessible avenue to measure high-resolution FFs based on 3D point clouds, improving flood prediction, and removing uncertainty from hydrodynamic modeling.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.02234
- https://arxiv.org/pdf/2404.02234
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393967877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393967877Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.02234Digital Object Identifier
- Title
-
Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-02Full publication date if available
- Authors
-
Francisco Haces‐Garcia, Vasileios Kotzamanis, Craig Glennie, Hanadi S. RifaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.02234Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.02234Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.02234Direct OA link when available
- Concepts
-
Flood myth, Point cloud, Artificial neural network, Point (geometry), Deep neural networks, Geology, Computer science, Artificial intelligence, Geography, Mathematics, Geometry, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393967877 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.02234 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.02234 |
| ids.openalex | https://openalex.org/W4393967877 |
| fwci | |
| type | preprint |
| title | Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9779000282287598 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9761000275611877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11751 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9354000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Lattice Boltzmann Simulation Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74256435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6906195878982544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[0].display_name | Flood myth |
| concepts[1].id | https://openalex.org/C131979681 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6217084527015686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[1].display_name | Point cloud |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5691549777984619 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C28719098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5090510249137878 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[3].display_name | Point (geometry) |
| concepts[4].id | https://openalex.org/C2984842247 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4572739899158478 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep neural networks |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4267139434814453 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.40976065397262573 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35857194662094116 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2493535280227661 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19268038868904114 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11490347981452942 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0796249508857727 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/flood-myth |
| keywords[0].score | 0.6906195878982544 |
| keywords[0].display_name | Flood myth |
| keywords[1].id | https://openalex.org/keywords/point-cloud |
| keywords[1].score | 0.6217084527015686 |
| keywords[1].display_name | Point cloud |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5691549777984619 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/point |
| keywords[3].score | 0.5090510249137878 |
| keywords[3].display_name | Point (geometry) |
| keywords[4].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[4].score | 0.4572739899158478 |
| keywords[4].display_name | Deep neural networks |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.4267139434814453 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.40976065397262573 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.35857194662094116 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.2493535280227661 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.19268038868904114 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.11490347981452942 |
| keywords[10].display_name | Geometry |
| keywords[11].id | https://openalex.org/keywords/archaeology |
| keywords[11].score | 0.0796249508857727 |
| keywords[11].display_name | Archaeology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.02234 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.02234 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.02234 |
| locations[1].id | doi:10.48550/arxiv.2404.02234 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.02234 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010456905 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1450-0247 |
| authorships[0].author.display_name | Francisco Haces‐Garcia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haces-Garcia, Francisco |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5090014917 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8774-195X |
| authorships[1].author.display_name | Vasileios Kotzamanis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kotzamanis, Vasileios |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034472952 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1570-0889 |
| authorships[2].author.display_name | Craig Glennie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Glennie, Craig |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5061660870 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7321-2448 |
| authorships[3].author.display_name | Hanadi S. Rifai |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rifai, Hanadi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.02234 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9779000282287598 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W3016928466, https://openalex.org/W4389574804, https://openalex.org/W2936725271, https://openalex.org/W3150655618, https://openalex.org/W3108295644, https://openalex.org/W1578717197, https://openalex.org/W2626737336, https://openalex.org/W2005998065, https://openalex.org/W2980582925, https://openalex.org/W4313588532 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.02234 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.02234 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.02234 |
| primary_location.id | pmh:oai:arXiv.org:2404.02234 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.02234 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.02234 |
| publication_date | 2024-04-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 197, 245 |
| abstract_inverted_index.n | 72, 91, 180 |
| abstract_inverted_index.1D | 104, 110, 159 |
| abstract_inverted_index.2D | 106 |
| abstract_inverted_index.3D | 257 |
| abstract_inverted_index.In | 157 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.in | 102, 166, 239 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 3, 6, 178, 203, 229, 237 |
| abstract_inverted_index.on | 40, 74, 82, 256 |
| abstract_inverted_index.to | 14, 20, 29, 47, 69, 87, 126, 183, 199, 225, 231, 251 |
| abstract_inverted_index.DNN | 79 |
| abstract_inverted_index.FFs | 26, 206, 230, 254 |
| abstract_inverted_index.For | 109, 130, 172 |
| abstract_inverted_index.The | 78 |
| abstract_inverted_index.and | 94, 105, 160, 188, 210, 248, 263 |
| abstract_inverted_index.are | 11, 27 |
| abstract_inverted_index.for | 120, 154, 190 |
| abstract_inverted_index.one | 2 |
| abstract_inverted_index.the | 4, 15, 112, 134, 175, 201, 227, 235 |
| abstract_inverted_index.was | 80, 217 |
| abstract_inverted_index.Deep | 57 |
| abstract_inverted_index.FFs, | 49 |
| abstract_inverted_index.FFs. | 204 |
| abstract_inverted_index.This | 52, 242 |
| abstract_inverted_index.both | 103, 158, 185 |
| abstract_inverted_index.data | 66, 153 |
| abstract_inverted_index.flow | 221 |
| abstract_inverted_index.from | 144, 266 |
| abstract_inverted_index.land | 45, 127 |
| abstract_inverted_index.rely | 39 |
| abstract_inverted_index.they | 32 |
| abstract_inverted_index.use) | 46 |
| abstract_inverted_index.used | 19 |
| abstract_inverted_index.were | 181, 223 |
| abstract_inverted_index.when | 124 |
| abstract_inverted_index.with | 65, 117, 140, 169 |
| abstract_inverted_index.(FFs) | 18 |
| abstract_inverted_index.(such | 43 |
| abstract_inverted_index.1D/2D | 131, 161 |
| abstract_inverted_index.Cloud | 76 |
| abstract_inverted_index.Flood | 36 |
| abstract_inverted_index.Point | 75, 85 |
| abstract_inverted_index.based | 73, 255 |
| abstract_inverted_index.claim | 152 |
| abstract_inverted_index.cover | 128 |
| abstract_inverted_index.data. | 77 |
| abstract_inverted_index.depth | 123 |
| abstract_inverted_index.flood | 9, 141, 150, 212, 240, 261 |
| abstract_inverted_index.flume | 63 |
| abstract_inverted_index.found | 182, 224 |
| abstract_inverted_index.lidar | 84, 113, 135, 164, 176 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.point | 258 |
| abstract_inverted_index.storm | 96, 192 |
| abstract_inverted_index.surge | 215 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.under | 92 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.water | 122 |
| abstract_inverted_index.while | 147, 194, 214 |
| abstract_inverted_index.(DNN), | 60 |
| abstract_inverted_index.Clouds | 86 |
| abstract_inverted_index.Neural | 58 |
| abstract_inverted_index.avenue | 250 |
| abstract_inverted_index.better | 138, 148, 167 |
| abstract_inverted_index.change | 226 |
| abstract_inverted_index.cruxes | 5 |
| abstract_inverted_index.highly | 12 |
| abstract_inverted_index.models | 37, 119, 187 |
| abstract_inverted_index.values | 114, 136 |
| abstract_inverted_index.Factors | 17 |
| abstract_inverted_index.Harvey. | 156 |
| abstract_inverted_index.Network | 59 |
| abstract_inverted_index.because | 31 |
| abstract_inverted_index.clouds, | 259 |
| abstract_inverted_index.coupled | 132, 162 |
| abstract_inverted_index.events, | 97, 193 |
| abstract_inverted_index.extents | 142 |
| abstract_inverted_index.extreme | 95, 191 |
| abstract_inverted_index.fluvial | 209, 232 |
| abstract_inverted_index.gauges. | 171 |
| abstract_inverted_index.improve | 184 |
| abstract_inverted_index.losses. | 23 |
| abstract_inverted_index.measure | 30, 70, 89, 252 |
| abstract_inverted_index.models, | 111, 133, 163, 213, 233 |
| abstract_inverted_index.models. | 108, 241 |
| abstract_inverted_index.pathway | 198 |
| abstract_inverted_index.pluvial | 211 |
| abstract_inverted_index.require | 33 |
| abstract_inverted_index.showing | 98 |
| abstract_inverted_index.trained | 61 |
| abstract_inverted_index.values. | 129 |
| abstract_inverted_index.Changing | 205 |
| abstract_inverted_index.Friction | 0, 16 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.affected | 208 |
| abstract_inverted_index.airborne | 145 |
| abstract_inverted_index.compared | 125 |
| abstract_inverted_index.deployed | 81 |
| abstract_inverted_index.directly | 88 |
| abstract_inverted_index.estimate | 48 |
| abstract_inverted_index.flooding | 216 |
| abstract_inverted_index.friction | 238 |
| abstract_inverted_index.imagery, | 146 |
| abstract_inverted_index.improved | 99 |
| abstract_inverted_index.matching | 149 |
| abstract_inverted_index.measured | 143 |
| abstract_inverted_index.momentum | 22 |
| abstract_inverted_index.presents | 54 |
| abstract_inverted_index.produced | 137 |
| abstract_inverted_index.reasons, | 174 |
| abstract_inverted_index.removing | 264 |
| abstract_inverted_index.research | 53, 243 |
| abstract_inverted_index.resulted | 165 |
| abstract_inverted_index.Hurricane | 155 |
| abstract_inverted_index.Manning's | 71, 90, 179 |
| abstract_inverted_index.advancing | 234 |
| abstract_inverted_index.agreement | 139, 168 |
| abstract_inverted_index.calculate | 21 |
| abstract_inverted_index.decreased | 115 |
| abstract_inverted_index.empirical | 25 |
| abstract_inverted_index.forecasts | 189 |
| abstract_inverted_index.generally | 218 |
| abstract_inverted_index.improving | 260 |
| abstract_inverted_index.insurance | 151 |
| abstract_inverted_index.modeling. | 268 |
| abstract_inverted_index.modeling; | 8 |
| abstract_inverted_index.providing | 196 |
| abstract_inverted_index.reliable, | 246 |
| abstract_inverted_index.sensitive | 13 |
| abstract_inverted_index.surrogate | 41 |
| abstract_inverted_index.Downstream | 220 |
| abstract_inverted_index.conditions | 10, 222 |
| abstract_inverted_index.importance | 228 |
| abstract_inverted_index.in-channel | 121 |
| abstract_inverted_index.introduces | 244 |
| abstract_inverted_index.laboratory | 34 |
| abstract_inverted_index.literature | 236 |
| abstract_inverted_index.prediction | 100 |
| abstract_inverted_index.real-world | 83 |
| abstract_inverted_index.regulatory | 93, 118, 186 |
| abstract_inverted_index.validation | 170 |
| abstract_inverted_index.challenging | 28 |
| abstract_inverted_index.differences | 116 |
| abstract_inverted_index.experiments | 64 |
| abstract_inverted_index.introducing | 50 |
| abstract_inverted_index.measurement | 202 |
| abstract_inverted_index.prediction, | 262 |
| abstract_inverted_index.repeatable, | 247 |
| abstract_inverted_index.standardize | 200 |
| abstract_inverted_index.techniques, | 68 |
| abstract_inverted_index.unaffected. | 219 |
| abstract_inverted_index.uncertainty | 265 |
| abstract_inverted_index.augmentation | 67 |
| abstract_inverted_index.capabilities | 101 |
| abstract_inverted_index.experiments. | 35 |
| abstract_inverted_index.hydrodynamic | 7, 107, 267 |
| abstract_inverted_index.measurements | 177 |
| abstract_inverted_index.observations | 42 |
| abstract_inverted_index.uncertainty. | 51 |
| abstract_inverted_index.significantly | 207 |
| abstract_inverted_index.simultaneously | 195 |
| abstract_inverted_index.high-resolution | 253 |
| abstract_inverted_index.laboratory-trained | 56 |
| abstract_inverted_index.readily-accessible | 249 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |