Deep Reinforcement Learning based HVAC Control for Reducing Carbon Footprint of Buildings Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/isgt51731.2023.10066358
In this paper, we present our work on deep reinforcement learning (DRL) based intelligent control of Heating, Ventilation, and Air Conditioning (HVAC) with the goal of reducing carbon emission. We performed this task using 1) Marginal Operating Emission Rates (MOER), where the objective was to shift the demand to the low emission period of the day and 2) Time-Of-Use (TOU) demand-response price where the objective was to shift the demand to low price period of the day. This was achieved by learning an optimal pre-cooing strategy. We found the carbon emission reduction in the range of ≈ 6%-16% depending on the opportunity presented by the MOER signal. Similarly, we observed the carbon emission reduction in the range of ≈23%-29% during the peak price period when TOU price was used. The results clearly demonstrated the applicability of our approach in reducing the carbon footprint of the building.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/isgt51731.2023.10066358
- OA Status
- green
- Cited By
- 5
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4360584158
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4360584158Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/isgt51731.2023.10066358Digital Object Identifier
- Title
-
Deep Reinforcement Learning based HVAC Control for Reducing Carbon Footprint of BuildingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-16Full publication date if available
- Authors
-
Kuldeep Kurte, Kadir Amasyali, Peter L. Munk, Helia ZandiList of authors in order
- Landing page
-
https://doi.org/10.1109/isgt51731.2023.10066358Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1965263Direct OA link when available
- Concepts
-
HVAC, Carbon footprint, Reinforcement learning, Reduction (mathematics), Computer science, Range (aeronautics), Air conditioning, Ventilation (architecture), Environmental science, Carbon fibers, Automotive engineering, Greenhouse gas, Simulation, Engineering, Artificial intelligence, Mathematics, Aerospace engineering, Composite number, Geometry, Mechanical engineering, Ecology, Biology, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4360584158 |
|---|---|
| doi | https://doi.org/10.1109/isgt51731.2023.10066358 |
| ids.doi | https://doi.org/10.1109/isgt51731.2023.10066358 |
| ids.openalex | https://openalex.org/W4360584158 |
| fwci | 1.07104134 |
| type | article |
| title | Deep Reinforcement Learning based HVAC Control for Reducing Carbon Footprint of Buildings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10121 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Building Energy and Comfort Optimization |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T11954 |
| topics[2].field.id | https://openalex.org/fields/21 |
| topics[2].field.display_name | Energy |
| topics[2].score | 0.9857000112533569 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2105 |
| topics[2].subfield.display_name | Renewable Energy, Sustainability and the Environment |
| topics[2].display_name | Energy Efficiency and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122346748 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7396957278251648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1798773 |
| concepts[0].display_name | HVAC |
| concepts[1].id | https://openalex.org/C2780936489 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7151874303817749 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q310667 |
| concepts[1].display_name | Carbon footprint |
| concepts[2].id | https://openalex.org/C97541855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.655364453792572 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[2].display_name | Reinforcement learning |
| concepts[3].id | https://openalex.org/C111335779 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5540967583656311 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[3].display_name | Reduction (mathematics) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5144408345222473 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C204323151 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5039495825767517 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[5].display_name | Range (aeronautics) |
| concepts[6].id | https://openalex.org/C103742991 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5003502368927002 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q173725 |
| concepts[6].display_name | Air conditioning |
| concepts[7].id | https://openalex.org/C200457457 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46136751770973206 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q584049 |
| concepts[7].display_name | Ventilation (architecture) |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.44715380668640137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C140205800 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44044363498687744 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5860 |
| concepts[9].display_name | Carbon fibers |
| concepts[10].id | https://openalex.org/C171146098 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4141292870044708 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[10].display_name | Automotive engineering |
| concepts[11].id | https://openalex.org/C47737302 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3897162079811096 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q167336 |
| concepts[11].display_name | Greenhouse gas |
| concepts[12].id | https://openalex.org/C44154836 |
| concepts[12].level | 1 |
| concepts[12].score | 0.33155161142349243 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[12].display_name | Simulation |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2450733780860901 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2334156334400177 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.09255388379096985 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C104779481 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[17].display_name | Composite number |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C78519656 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[19].display_name | Mechanical engineering |
| concepts[20].id | https://openalex.org/C18903297 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[20].display_name | Ecology |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C11413529 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[22].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/hvac |
| keywords[0].score | 0.7396957278251648 |
| keywords[0].display_name | HVAC |
| keywords[1].id | https://openalex.org/keywords/carbon-footprint |
| keywords[1].score | 0.7151874303817749 |
| keywords[1].display_name | Carbon footprint |
| keywords[2].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[2].score | 0.655364453792572 |
| keywords[2].display_name | Reinforcement learning |
| keywords[3].id | https://openalex.org/keywords/reduction |
| keywords[3].score | 0.5540967583656311 |
| keywords[3].display_name | Reduction (mathematics) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5144408345222473 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/range |
| keywords[5].score | 0.5039495825767517 |
| keywords[5].display_name | Range (aeronautics) |
| keywords[6].id | https://openalex.org/keywords/air-conditioning |
| keywords[6].score | 0.5003502368927002 |
| keywords[6].display_name | Air conditioning |
| keywords[7].id | https://openalex.org/keywords/ventilation |
| keywords[7].score | 0.46136751770973206 |
| keywords[7].display_name | Ventilation (architecture) |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.44715380668640137 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/carbon-fibers |
| keywords[9].score | 0.44044363498687744 |
| keywords[9].display_name | Carbon fibers |
| keywords[10].id | https://openalex.org/keywords/automotive-engineering |
| keywords[10].score | 0.4141292870044708 |
| keywords[10].display_name | Automotive engineering |
| keywords[11].id | https://openalex.org/keywords/greenhouse-gas |
| keywords[11].score | 0.3897162079811096 |
| keywords[11].display_name | Greenhouse gas |
| keywords[12].id | https://openalex.org/keywords/simulation |
| keywords[12].score | 0.33155161142349243 |
| keywords[12].display_name | Simulation |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.2450733780860901 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.2334156334400177 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.09255388379096985 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/isgt51731.2023.10066358 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) |
| locations[0].landing_page_url | https://doi.org/10.1109/isgt51731.2023.10066358 |
| locations[1].id | pmh:oai:osti.gov:1965263 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1965263 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5025725109 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5797-7654 |
| authorships[0].author.display_name | Kuldeep Kurte |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[0].affiliations[0].raw_affiliation_string | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| authorships[0].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[0].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kuldeep Kurte |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| authorships[1].author.id | https://openalex.org/A5002699332 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0585-0103 |
| authorships[1].author.display_name | Kadir Amasyali |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[1].affiliations[0].raw_affiliation_string | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| authorships[1].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[1].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kadir Amasyali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| authorships[2].author.id | https://openalex.org/A5108062300 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8555-2573 |
| authorships[2].author.display_name | Peter L. Munk |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1297288678 |
| authorships[2].affiliations[0].raw_affiliation_string | National Renewable Energy Laboratory |
| authorships[2].institutions[0].id | https://openalex.org/I1297288678 |
| authorships[2].institutions[0].ror | https://ror.org/036266993 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1297288678, https://openalex.org/I1330989302, https://openalex.org/I2800842121 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | National Renewable Energy Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jeffrey Munk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Renewable Energy Laboratory |
| authorships[3].author.id | https://openalex.org/A5065634507 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3966-7454 |
| authorships[3].author.display_name | Helia Zandi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1289243028 |
| authorships[3].affiliations[0].raw_affiliation_string | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| authorships[3].institutions[0].id | https://openalex.org/I1289243028 |
| authorships[3].institutions[0].ror | https://ror.org/01qz5mb56 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1289243028, https://openalex.org/I1330989302, https://openalex.org/I39565521, https://openalex.org/I4210159294 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Oak Ridge National Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Helia Zandi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computing and Computational Sciences Directorate, Oak Ridge National Laboratory |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1965263 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Reinforcement Learning based HVAC Control for Reducing Carbon Footprint of Buildings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10121 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Building Energy and Comfort Optimization |
| related_works | https://openalex.org/W2112866972, https://openalex.org/W4240233711, https://openalex.org/W2900606913, https://openalex.org/W4320003279, https://openalex.org/W2326910963, https://openalex.org/W3111008797, https://openalex.org/W3046823714, https://openalex.org/W2348218441, https://openalex.org/W4205684936, https://openalex.org/W3021806226 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:osti.gov:1965263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1965263 |
| primary_location.id | doi:10.1109/isgt51731.2023.10066358 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) |
| primary_location.landing_page_url | https://doi.org/10.1109/isgt51731.2023.10066358 |
| publication_date | 2023-01-16 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1209078686, https://openalex.org/W2625874945, https://openalex.org/W3087355053, https://openalex.org/W3095810316, https://openalex.org/W3212144550, https://openalex.org/W3141983751, https://openalex.org/W3103997657, https://openalex.org/W3108494302, https://openalex.org/W4283210454, https://openalex.org/W4289755410, https://openalex.org/W4280553685, https://openalex.org/W4226066269, https://openalex.org/W6860039097, https://openalex.org/W2145339207, https://openalex.org/W4287337616 |
| referenced_works_count | 15 |
| abstract_inverted_index.1) | 34 |
| abstract_inverted_index.2) | 57 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 29, 86 |
| abstract_inverted_index.an | 82 |
| abstract_inverted_index.by | 80, 103 |
| abstract_inverted_index.in | 92, 114, 138 |
| abstract_inverted_index.of | 15, 25, 53, 74, 95, 117, 135, 143 |
| abstract_inverted_index.on | 7, 99 |
| abstract_inverted_index.to | 44, 48, 66, 70 |
| abstract_inverted_index.we | 3, 108 |
| abstract_inverted_index.Air | 19 |
| abstract_inverted_index.TOU | 125 |
| abstract_inverted_index.The | 129 |
| abstract_inverted_index.and | 18, 56 |
| abstract_inverted_index.day | 55 |
| abstract_inverted_index.low | 50, 71 |
| abstract_inverted_index.our | 5, 136 |
| abstract_inverted_index.the | 23, 41, 46, 49, 54, 63, 68, 75, 88, 93, 100, 104, 110, 115, 120, 133, 140, 144 |
| abstract_inverted_index.was | 43, 65, 78, 127 |
| abstract_inverted_index.≈ | 96 |
| abstract_inverted_index.MOER | 105 |
| abstract_inverted_index.This | 77 |
| abstract_inverted_index.day. | 76 |
| abstract_inverted_index.deep | 8 |
| abstract_inverted_index.goal | 24 |
| abstract_inverted_index.peak | 121 |
| abstract_inverted_index.task | 32 |
| abstract_inverted_index.this | 1, 31 |
| abstract_inverted_index.when | 124 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.work | 6 |
| abstract_inverted_index.(DRL) | 11 |
| abstract_inverted_index.(TOU) | 59 |
| abstract_inverted_index.Rates | 38 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.found | 87 |
| abstract_inverted_index.price | 61, 72, 122, 126 |
| abstract_inverted_index.range | 94, 116 |
| abstract_inverted_index.shift | 45, 67 |
| abstract_inverted_index.used. | 128 |
| abstract_inverted_index.using | 33 |
| abstract_inverted_index.where | 40, 62 |
| abstract_inverted_index.(HVAC) | 21 |
| abstract_inverted_index.6%-16% | 97 |
| abstract_inverted_index.carbon | 27, 89, 111, 141 |
| abstract_inverted_index.demand | 47, 69 |
| abstract_inverted_index.during | 119 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.period | 52, 73, 123 |
| abstract_inverted_index.(MOER), | 39 |
| abstract_inverted_index.clearly | 131 |
| abstract_inverted_index.control | 14 |
| abstract_inverted_index.optimal | 83 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.signal. | 106 |
| abstract_inverted_index.Emission | 37 |
| abstract_inverted_index.Heating, | 16 |
| abstract_inverted_index.Marginal | 35 |
| abstract_inverted_index.achieved | 79 |
| abstract_inverted_index.approach | 137 |
| abstract_inverted_index.emission | 51, 90, 112 |
| abstract_inverted_index.learning | 10, 81 |
| abstract_inverted_index.observed | 109 |
| abstract_inverted_index.reducing | 26, 139 |
| abstract_inverted_index.Operating | 36 |
| abstract_inverted_index.building. | 145 |
| abstract_inverted_index.depending | 98 |
| abstract_inverted_index.emission. | 28 |
| abstract_inverted_index.footprint | 142 |
| abstract_inverted_index.objective | 42, 64 |
| abstract_inverted_index.performed | 30 |
| abstract_inverted_index.presented | 102 |
| abstract_inverted_index.reduction | 91, 113 |
| abstract_inverted_index.strategy. | 85 |
| abstract_inverted_index.Similarly, | 107 |
| abstract_inverted_index.pre-cooing | 84 |
| abstract_inverted_index.≈23%-29% | 118 |
| abstract_inverted_index.Time-Of-Use | 58 |
| abstract_inverted_index.intelligent | 13 |
| abstract_inverted_index.opportunity | 101 |
| abstract_inverted_index.Conditioning | 20 |
| abstract_inverted_index.Ventilation, | 17 |
| abstract_inverted_index.demonstrated | 132 |
| abstract_inverted_index.applicability | 134 |
| abstract_inverted_index.reinforcement | 9 |
| abstract_inverted_index.demand-response | 60 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.71169854 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |