Deep Reinforcement Learning in Action: Real-Time Control of Vortex-Induced Vibrations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.24556
This study showcases an experimental deployment of deep reinforcement learning (DRL) for active flow control (AFC) of vortex-induced vibrations (VIV) in a circular cylinder at a high Reynolds number (Re = 3000) using rotary actuation. Departing from prior work that relied on low-Reynolds-number numerical simulations, this research demonstrates real-time control in a challenging experimental setting, successfully addressing practical constraints such as actuator delay. When the learning algorithm is provided with state feedback alone (displacement and velocity of the oscillating cylinder), the DRL agent learns a low-frequency rotary control strategy that achieves up to 80% vibration suppression which leverages the traditional lock-on phenomenon. While this level of suppression is significant, it remains below the performance achieved using high-frequency rotary actuation. The reduction in performance is attributed to actuation delays and can be mitigated by augmenting the learning algorithm with past control actions. This enables the agent to learn a high-frequency rotary control strategy that effectively modifies vortex shedding and achieves over 95% vibration attenuation. These results demonstrate the adaptability of DRL for AFC in real-world experiments and its ability to overcome instrumental limitations such as actuation lag.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.24556
- https://arxiv.org/pdf/2509.24556
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415336947
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415336947Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.24556Digital Object Identifier
- Title
-
Deep Reinforcement Learning in Action: Real-Time Control of Vortex-Induced VibrationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Hussam Sababha, Bernat Font, Mohammed F. DaqaqList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.24556Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.24556Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.24556Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415336947 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.24556 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.24556 |
| ids.openalex | https://openalex.org/W4415336947 |
| fwci | |
| type | preprint |
| title | Deep Reinforcement Learning in Action: Real-Time Control of Vortex-Induced Vibrations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11254 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9384999871253967 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Fluid Dynamics and Vibration Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.24556 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.24556 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.24556 |
| locations[1].id | doi:10.48550/arxiv.2509.24556 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.24556 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115087040 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hussam Sababha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sababha, Hussam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031672395 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2136-3068 |
| authorships[1].author.display_name | Bernat Font |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Font, Bernat |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036724917 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2004-6482 |
| authorships[2].author.display_name | Mohammed F. Daqaq |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Daqaq, Mohammed |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.24556 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | Deep Reinforcement Learning in Action: Real-Time Control of Vortex-Induced Vibrations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11254 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9384999871253967 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Fluid Dynamics and Vibration Analysis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.24556 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.24556 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.24556 |
| primary_location.id | pmh:oai:arXiv.org:2509.24556 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.24556 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.24556 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 30 |
| abstract_inverted_index.a | 21, 25, 51, 84, 147 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 60, 183 |
| abstract_inverted_index.at | 24 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 20, 50, 121, 172 |
| abstract_inverted_index.is | 67, 107, 123 |
| abstract_inverted_index.it | 109 |
| abstract_inverted_index.of | 6, 16, 76, 105, 168 |
| abstract_inverted_index.on | 41 |
| abstract_inverted_index.to | 92, 125, 145, 178 |
| abstract_inverted_index.up | 91 |
| abstract_inverted_index.(Re | 29 |
| abstract_inverted_index.80% | 93 |
| abstract_inverted_index.95% | 160 |
| abstract_inverted_index.AFC | 171 |
| abstract_inverted_index.DRL | 81, 169 |
| abstract_inverted_index.The | 119 |
| abstract_inverted_index.and | 74, 128, 157, 175 |
| abstract_inverted_index.can | 129 |
| abstract_inverted_index.for | 11, 170 |
| abstract_inverted_index.its | 176 |
| abstract_inverted_index.the | 64, 77, 80, 98, 112, 134, 143, 166 |
| abstract_inverted_index.This | 0, 141 |
| abstract_inverted_index.When | 63 |
| abstract_inverted_index.deep | 7 |
| abstract_inverted_index.flow | 13 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.high | 26 |
| abstract_inverted_index.lag. | 185 |
| abstract_inverted_index.over | 159 |
| abstract_inverted_index.past | 138 |
| abstract_inverted_index.such | 59, 182 |
| abstract_inverted_index.that | 39, 89, 152 |
| abstract_inverted_index.this | 45, 103 |
| abstract_inverted_index.with | 69, 137 |
| abstract_inverted_index.work | 38 |
| abstract_inverted_index.(AFC) | 15 |
| abstract_inverted_index.(DRL) | 10 |
| abstract_inverted_index.(VIV) | 19 |
| abstract_inverted_index.3000) | 31 |
| abstract_inverted_index.These | 163 |
| abstract_inverted_index.While | 102 |
| abstract_inverted_index.agent | 82, 144 |
| abstract_inverted_index.alone | 72 |
| abstract_inverted_index.below | 111 |
| abstract_inverted_index.learn | 146 |
| abstract_inverted_index.level | 104 |
| abstract_inverted_index.prior | 37 |
| abstract_inverted_index.state | 70 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.using | 32, 115 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.active | 12 |
| abstract_inverted_index.delay. | 62 |
| abstract_inverted_index.delays | 127 |
| abstract_inverted_index.learns | 83 |
| abstract_inverted_index.number | 28 |
| abstract_inverted_index.relied | 40 |
| abstract_inverted_index.rotary | 33, 86, 117, 149 |
| abstract_inverted_index.vortex | 155 |
| abstract_inverted_index.ability | 177 |
| abstract_inverted_index.control | 14, 49, 87, 139, 150 |
| abstract_inverted_index.enables | 142 |
| abstract_inverted_index.lock-on | 100 |
| abstract_inverted_index.remains | 110 |
| abstract_inverted_index.results | 164 |
| abstract_inverted_index.Reynolds | 27 |
| abstract_inverted_index.achieved | 114 |
| abstract_inverted_index.achieves | 90, 158 |
| abstract_inverted_index.actions. | 140 |
| abstract_inverted_index.actuator | 61 |
| abstract_inverted_index.circular | 22 |
| abstract_inverted_index.cylinder | 23 |
| abstract_inverted_index.feedback | 71 |
| abstract_inverted_index.learning | 9, 65, 135 |
| abstract_inverted_index.modifies | 154 |
| abstract_inverted_index.overcome | 179 |
| abstract_inverted_index.provided | 68 |
| abstract_inverted_index.research | 46 |
| abstract_inverted_index.setting, | 54 |
| abstract_inverted_index.shedding | 156 |
| abstract_inverted_index.strategy | 88, 151 |
| abstract_inverted_index.velocity | 75 |
| abstract_inverted_index.Departing | 35 |
| abstract_inverted_index.actuation | 126, 184 |
| abstract_inverted_index.algorithm | 66, 136 |
| abstract_inverted_index.leverages | 97 |
| abstract_inverted_index.mitigated | 131 |
| abstract_inverted_index.numerical | 43 |
| abstract_inverted_index.practical | 57 |
| abstract_inverted_index.real-time | 48 |
| abstract_inverted_index.reduction | 120 |
| abstract_inverted_index.showcases | 2 |
| abstract_inverted_index.vibration | 94, 161 |
| abstract_inverted_index.actuation. | 34, 118 |
| abstract_inverted_index.addressing | 56 |
| abstract_inverted_index.attributed | 124 |
| abstract_inverted_index.augmenting | 133 |
| abstract_inverted_index.cylinder), | 79 |
| abstract_inverted_index.deployment | 5 |
| abstract_inverted_index.real-world | 173 |
| abstract_inverted_index.vibrations | 18 |
| abstract_inverted_index.challenging | 52 |
| abstract_inverted_index.constraints | 58 |
| abstract_inverted_index.demonstrate | 165 |
| abstract_inverted_index.effectively | 153 |
| abstract_inverted_index.experiments | 174 |
| abstract_inverted_index.limitations | 181 |
| abstract_inverted_index.oscillating | 78 |
| abstract_inverted_index.performance | 113, 122 |
| abstract_inverted_index.phenomenon. | 101 |
| abstract_inverted_index.suppression | 95, 106 |
| abstract_inverted_index.traditional | 99 |
| abstract_inverted_index.adaptability | 167 |
| abstract_inverted_index.attenuation. | 162 |
| abstract_inverted_index.demonstrates | 47 |
| abstract_inverted_index.experimental | 4, 53 |
| abstract_inverted_index.instrumental | 180 |
| abstract_inverted_index.significant, | 108 |
| abstract_inverted_index.simulations, | 44 |
| abstract_inverted_index.successfully | 55 |
| abstract_inverted_index.(displacement | 73 |
| abstract_inverted_index.low-frequency | 85 |
| abstract_inverted_index.reinforcement | 8 |
| abstract_inverted_index.high-frequency | 116, 148 |
| abstract_inverted_index.vortex-induced | 17 |
| abstract_inverted_index.low-Reynolds-number | 42 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |