Deep reinforcement learning of event-triggered communication and control for multi-agent cooperative transport Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.15260
In this paper, we explore a multi-agent reinforcement learning approach to address the design problem of communication and control strategies for multi-agent cooperative transport. Typical end-to-end deep neural network policies may be insufficient for covering communication and control; these methods cannot decide the timing of communication and can only work with fixed-rate communications. Therefore, our framework exploits event-triggered architecture, namely, a feedback controller that computes the communication input and a triggering mechanism that determines when the input has to be updated again. Such event-triggered control policies are efficiently optimized using a multi-agent deep deterministic policy gradient. We confirmed that our approach could balance the transport performance and communication savings through numerical simulations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.15260
- https://arxiv.org/pdf/2103.15260
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3157820316
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3157820316Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.15260Digital Object Identifier
- Title
-
Deep reinforcement learning of event-triggered communication and control for multi-agent cooperative transportWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-29Full publication date if available
- Authors
-
Kazuki Shibata, T. Jimbo, Takamitsu MatsubaraList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.15260Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.15260Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.15260Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Controller (irrigation), Event (particle physics), Control (management), Exploit, Telecommunications network, Multi-agent system, Distributed computing, Artificial neural network, Artificial intelligence, Computer network, Physics, Biology, Computer security, Quantum mechanics, AgronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3157820316 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.15260 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.15260 |
| ids.mag | 3157820316 |
| ids.openalex | https://openalex.org/W3157820316 |
| fwci | |
| type | preprint |
| title | Deep reinforcement learning of event-triggered communication and control for multi-agent cooperative transport |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10524 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9641000032424927 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Traffic control and management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9020823240280151 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7679377794265747 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C203479927 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6376627683639526 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5165939 |
| concepts[2].display_name | Controller (irrigation) |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6197506785392761 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C2775924081 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5639646053314209 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[4].display_name | Control (management) |
| concepts[5].id | https://openalex.org/C165696696 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5296380519866943 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[5].display_name | Exploit |
| concepts[6].id | https://openalex.org/C192126672 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5083796381950378 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1068715 |
| concepts[6].display_name | Telecommunications network |
| concepts[7].id | https://openalex.org/C41550386 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4781526029109955 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q529909 |
| concepts[7].display_name | Multi-agent system |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4575651288032532 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43311724066734314 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28742527961730957 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22372865676879883 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C6557445 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[16].display_name | Agronomy |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.9020823240280151 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7679377794265747 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/controller |
| keywords[2].score | 0.6376627683639526 |
| keywords[2].display_name | Controller (irrigation) |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.6197506785392761 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/control |
| keywords[4].score | 0.5639646053314209 |
| keywords[4].display_name | Control (management) |
| keywords[5].id | https://openalex.org/keywords/exploit |
| keywords[5].score | 0.5296380519866943 |
| keywords[5].display_name | Exploit |
| keywords[6].id | https://openalex.org/keywords/telecommunications-network |
| keywords[6].score | 0.5083796381950378 |
| keywords[6].display_name | Telecommunications network |
| keywords[7].id | https://openalex.org/keywords/multi-agent-system |
| keywords[7].score | 0.4781526029109955 |
| keywords[7].display_name | Multi-agent system |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.4575651288032532 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.43311724066734314 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.28742527961730957 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.22372865676879883 |
| keywords[11].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.15260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.15260 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.15260 |
| locations[1].id | doi:10.48550/arxiv.2103.15260 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.15260 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073719311 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0753-7663 |
| authorships[0].author.display_name | Kazuki Shibata |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kazuki Shibata |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066055821 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6863-4868 |
| authorships[1].author.display_name | T. Jimbo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tomohiko Jimbo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042074952 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3545-4814 |
| authorships[2].author.display_name | Takamitsu Matsubara |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Takamitsu Matsubara |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.15260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep reinforcement learning of event-triggered communication and control for multi-agent cooperative transport |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10524 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9641000032424927 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Traffic control and management |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.15260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.15260 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.15260 |
| primary_location.id | pmh:oai:arXiv.org:2103.15260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.15260 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.15260 |
| publication_date | 2021-03-29 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 60, 69, 90 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 96 |
| abstract_inverted_index.be | 31, 79 |
| abstract_inverted_index.of | 15, 44 |
| abstract_inverted_index.to | 10, 78 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.and | 17, 36, 46, 68, 106 |
| abstract_inverted_index.are | 86 |
| abstract_inverted_index.can | 47 |
| abstract_inverted_index.for | 20, 33 |
| abstract_inverted_index.has | 77 |
| abstract_inverted_index.may | 30 |
| abstract_inverted_index.our | 54, 99 |
| abstract_inverted_index.the | 12, 42, 65, 75, 103 |
| abstract_inverted_index.Such | 82 |
| abstract_inverted_index.deep | 26, 92 |
| abstract_inverted_index.only | 48 |
| abstract_inverted_index.that | 63, 72, 98 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.when | 74 |
| abstract_inverted_index.with | 50 |
| abstract_inverted_index.work | 49 |
| abstract_inverted_index.could | 101 |
| abstract_inverted_index.input | 67, 76 |
| abstract_inverted_index.these | 38 |
| abstract_inverted_index.using | 89 |
| abstract_inverted_index.again. | 81 |
| abstract_inverted_index.cannot | 40 |
| abstract_inverted_index.decide | 41 |
| abstract_inverted_index.design | 13 |
| abstract_inverted_index.neural | 27 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.policy | 94 |
| abstract_inverted_index.timing | 43 |
| abstract_inverted_index.Typical | 24 |
| abstract_inverted_index.address | 11 |
| abstract_inverted_index.balance | 102 |
| abstract_inverted_index.control | 18, 84 |
| abstract_inverted_index.explore | 4 |
| abstract_inverted_index.methods | 39 |
| abstract_inverted_index.namely, | 59 |
| abstract_inverted_index.network | 28 |
| abstract_inverted_index.problem | 14 |
| abstract_inverted_index.savings | 108 |
| abstract_inverted_index.through | 109 |
| abstract_inverted_index.updated | 80 |
| abstract_inverted_index.approach | 9, 100 |
| abstract_inverted_index.computes | 64 |
| abstract_inverted_index.control; | 37 |
| abstract_inverted_index.covering | 34 |
| abstract_inverted_index.exploits | 56 |
| abstract_inverted_index.feedback | 61 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.policies | 29, 85 |
| abstract_inverted_index.confirmed | 97 |
| abstract_inverted_index.framework | 55 |
| abstract_inverted_index.gradient. | 95 |
| abstract_inverted_index.mechanism | 71 |
| abstract_inverted_index.numerical | 110 |
| abstract_inverted_index.optimized | 88 |
| abstract_inverted_index.transport | 104 |
| abstract_inverted_index.Therefore, | 53 |
| abstract_inverted_index.controller | 62 |
| abstract_inverted_index.determines | 73 |
| abstract_inverted_index.end-to-end | 25 |
| abstract_inverted_index.fixed-rate | 51 |
| abstract_inverted_index.strategies | 19 |
| abstract_inverted_index.transport. | 23 |
| abstract_inverted_index.triggering | 70 |
| abstract_inverted_index.cooperative | 22 |
| abstract_inverted_index.efficiently | 87 |
| abstract_inverted_index.multi-agent | 6, 21, 91 |
| abstract_inverted_index.performance | 105 |
| abstract_inverted_index.insufficient | 32 |
| abstract_inverted_index.simulations. | 111 |
| abstract_inverted_index.architecture, | 58 |
| abstract_inverted_index.communication | 16, 35, 45, 66, 107 |
| abstract_inverted_index.deterministic | 93 |
| abstract_inverted_index.reinforcement | 7 |
| abstract_inverted_index.communications. | 52 |
| abstract_inverted_index.event-triggered | 57, 83 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |