Deep representation learning for clustering longitudinal survival data from electronic health records Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41467-025-56625-z
Precision medicine requires accurate identification of clinically relevant patient subgroups. Electronic health records provide major opportunities for leveraging machine learning approaches to uncover novel patient subgroups. However, many existing approaches fail to adequately capture complex interactions between diagnosis trajectories and disease-relevant risk events, leading to subgroups that can still display great heterogeneity in event risk and underlying molecular mechanisms. To address this challenge, we implemented VaDeSC-EHR, a transformer-based variational autoencoder for clustering longitudinal survival data as extracted from electronic health records. We show that VaDeSC-EHR outperforms baseline methods on both synthetic and real-world benchmark datasets with known ground-truth cluster labels. In an application to Crohn’s disease, VaDeSC-EHR successfully identifies four distinct subgroups with divergent diagnosis trajectories and risk profiles, revealing clinically and genetically relevant factors in Crohn’s disease. Our results show that VaDeSC-EHR can be a powerful tool for discovering novel patient subgroups in the development of precision medicine approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41467-025-56625-z
- https://www.nature.com/articles/s41467-025-56625-z.pdf
- OA Status
- gold
- Cited By
- 6
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408460145
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408460145Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41467-025-56625-zDigital Object Identifier
- Title
-
Deep representation learning for clustering longitudinal survival data from electronic health recordsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-14Full publication date if available
- Authors
-
Jiajun Qiu, Yao Hu, Li Li, A. Mesut Erzurumluoglu, Ingrid Brænne, Charles E. Whitehurst, Jochen Schmitz, Jatin Arora, Boris Bartholdy, Shrey Gandhi, Pierre Khoueiry, Stefanie Mueller, Boris Noyvert, Zhihao Ding, Jan Jensen, Johann de JongList of authors in order
- Landing page
-
https://doi.org/10.1038/s41467-025-56625-zPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41467-025-56625-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41467-025-56625-z.pdfDirect OA link when available
- Concepts
-
Autoencoder, Computer science, Cluster analysis, Health records, Machine learning, Artificial intelligence, Benchmark (surveying), Data mining, Data science, Disease, Deep learning, Medicine, Health care, Cartography, Geography, Economics, Economic growth, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408460145 |
|---|---|
| doi | https://doi.org/10.1038/s41467-025-56625-z |
| ids.doi | https://doi.org/10.1038/s41467-025-56625-z |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40087274 |
| ids.openalex | https://openalex.org/W4408460145 |
| fwci | 28.91847088 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000706 |
| mesh[1].descriptor_ui | D057286 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | statistics & numerical data |
| mesh[1].descriptor_name | Electronic Health Records |
| mesh[2].qualifier_ui | Q000401 |
| mesh[2].descriptor_ui | D003424 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | mortality |
| mesh[2].descriptor_name | Crohn Disease |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016000 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Cluster Analysis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000077321 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Deep Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008137 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Longitudinal Studies |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D057285 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Precision Medicine |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016019 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Survival Analysis |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D008297 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Male |
| mesh[11].qualifier_ui | Q000706 |
| mesh[11].descriptor_ui | D057286 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | statistics & numerical data |
| mesh[11].descriptor_name | Electronic Health Records |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000175 |
| mesh[13].descriptor_ui | D003424 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | diagnosis |
| mesh[13].descriptor_name | Crohn Disease |
| mesh[14].qualifier_ui | Q000401 |
| mesh[14].descriptor_ui | D003424 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | mortality |
| mesh[14].descriptor_name | Crohn Disease |
| mesh[15].qualifier_ui | Q000235 |
| mesh[15].descriptor_ui | D003424 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | genetics |
| mesh[15].descriptor_name | Crohn Disease |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008137 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Longitudinal Studies |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016000 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Cluster Analysis |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000077321 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Deep Learning |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D057285 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Precision Medicine |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000069550 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Machine Learning |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D006801 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Humans |
| mesh[22].qualifier_ui | Q000706 |
| mesh[22].descriptor_ui | D057286 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | statistics & numerical data |
| mesh[22].descriptor_name | Electronic Health Records |
| mesh[23].qualifier_ui | Q000401 |
| mesh[23].descriptor_ui | D003424 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | mortality |
| mesh[23].descriptor_name | Crohn Disease |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D016000 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Cluster Analysis |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000077321 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Deep Learning |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D008137 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Longitudinal Studies |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D057285 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Precision Medicine |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D016019 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Survival Analysis |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D005260 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Female |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000069550 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Machine Learning |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D008297 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Male |
| type | article |
| title | Deep representation learning for clustering longitudinal survival data from electronic health records |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 2534 |
| biblio.first_page | 2534 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12246 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9829000234603882 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Chronic Disease Management Strategies |
| topics[2].id | https://openalex.org/T14400 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9825999736785889 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Medical Coding and Health Information |
| is_xpac | False |
| apc_list.value | 3920 |
| apc_list.currency | GBP |
| apc_list.value_usd | 4808 |
| apc_paid.value | 3920 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 4808 |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6899516582489014 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6775150299072266 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6488210558891296 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C3019952477 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6403887867927551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[3].display_name | Health records |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5637549161911011 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5268130302429199 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4893288016319275 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44859492778778076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C2522767166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4274742007255554 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[8].display_name | Data science |
| concepts[9].id | https://openalex.org/C2779134260 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4132031202316284 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[9].display_name | Disease |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.30588746070861816 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.27217453718185425 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C160735492 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1656750738620758 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[12].display_name | Health care |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08755534887313843 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.6899516582489014 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6775150299072266 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6488210558891296 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/health-records |
| keywords[3].score | 0.6403887867927551 |
| keywords[3].display_name | Health records |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5637549161911011 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5268130302429199 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.4893288016319275 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.44859492778778076 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/data-science |
| keywords[8].score | 0.4274742007255554 |
| keywords[8].display_name | Data science |
| keywords[9].id | https://openalex.org/keywords/disease |
| keywords[9].score | 0.4132031202316284 |
| keywords[9].display_name | Disease |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.30588746070861816 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.27217453718185425 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/health-care |
| keywords[12].score | 0.1656750738620758 |
| keywords[12].display_name | Health care |
| keywords[13].id | https://openalex.org/keywords/cartography |
| keywords[13].score | 0.08755534887313843 |
| keywords[13].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.1038/s41467-025-56625-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S64187185 |
| locations[0].source.issn | 2041-1723 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2041-1723 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nature Communications |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41467-025-56625-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nature Communications |
| locations[0].landing_page_url | https://doi.org/10.1038/s41467-025-56625-z |
| locations[1].id | pmid:40087274 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nature communications |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40087274 |
| locations[2].id | pmh:oai:doaj.org/article:2950aed0b58d4ca8bcb61ce523dbc1f2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Nature Communications, Vol 16, Iss 1, Pp 1-14 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2950aed0b58d4ca8bcb61ce523dbc1f2 |
| locations[3].id | pmh:oai:europepmc.org:10725133 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11909183 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5012630135 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1790-8536 |
| authorships[0].author.display_name | Jiajun Qiu |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[0].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[0].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiajun Qiu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[1].author.id | https://openalex.org/A5104228339 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-0651-8487 |
| authorships[1].author.display_name | Yao Hu |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[1].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[1].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yao Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[2].author.id | https://openalex.org/A5100361005 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6746-4297 |
| authorships[2].author.display_name | Li Li |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[2].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[2].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[3].author.id | https://openalex.org/A5084476792 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1322-8138 |
| authorships[3].author.display_name | A. Mesut Erzurumluoglu |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[3].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[3].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abdullah Mesut Erzurumluoglu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[4].author.id | https://openalex.org/A5021335834 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4591-0326 |
| authorships[4].author.display_name | Ingrid Brænne |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[4].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[4].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ingrid Braenne |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[5].author.id | https://openalex.org/A5031897645 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3112-5458 |
| authorships[5].author.display_name | Charles E. Whitehurst |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210160255 |
| authorships[5].affiliations[0].raw_affiliation_string | Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210160255 |
| authorships[5].institutions[0].ror | https://ror.org/05kffp613 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1330995197, https://openalex.org/I4210160255 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Boehringer Ingelheim (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Charles Whitehurst |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA |
| authorships[6].author.id | https://openalex.org/A5112145711 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jochen Schmitz |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210160255 |
| authorships[6].affiliations[0].raw_affiliation_string | Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA |
| authorships[6].institutions[0].id | https://openalex.org/I4210160255 |
| authorships[6].institutions[0].ror | https://ror.org/05kffp613 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I1330995197, https://openalex.org/I4210160255 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Boehringer Ingelheim (United States) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jochen Schmitz |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Immunology & Respiratory Diseases, Boehringer-Ingelheim, Ridgefield, CT, USA |
| authorships[7].author.id | https://openalex.org/A5012959616 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9202-1906 |
| authorships[7].author.display_name | Jatin Arora |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[7].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[7].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[7].institutions[0].type | company |
| authorships[7].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jatin Arora |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[8].author.id | https://openalex.org/A5045482909 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7401-8591 |
| authorships[8].author.display_name | Boris Bartholdy |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[8].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[8].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[8].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[8].institutions[0].type | company |
| authorships[8].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Boris Alexander Bartholdy |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[9].author.id | https://openalex.org/A5070719982 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1635-1062 |
| authorships[9].author.display_name | Shrey Gandhi |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[9].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[9].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[9].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[9].institutions[0].type | company |
| authorships[9].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Shrey Gandhi |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[10].author.id | https://openalex.org/A5039949627 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-7643-3310 |
| authorships[10].author.display_name | Pierre Khoueiry |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[10].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[10].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[10].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[10].institutions[0].type | company |
| authorships[10].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[10].institutions[0].country_code | DE |
| authorships[10].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Pierre Khoueiry |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[11].author.id | https://openalex.org/A5109230605 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Stefanie Mueller |
| authorships[11].countries | DE |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[11].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[11].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[11].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[11].institutions[0].type | company |
| authorships[11].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[11].institutions[0].country_code | DE |
| authorships[11].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Stefanie Mueller |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[12].author.id | https://openalex.org/A5002644803 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-4455-1205 |
| authorships[12].author.display_name | Boris Noyvert |
| authorships[12].countries | DE |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[12].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[12].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[12].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[12].institutions[0].type | company |
| authorships[12].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[12].institutions[0].country_code | DE |
| authorships[12].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Boris Noyvert |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[13].author.id | https://openalex.org/A5101597644 |
| authorships[13].author.orcid | https://orcid.org/0009-0003-2303-5599 |
| authorships[13].author.display_name | Zhihao Ding |
| authorships[13].countries | DE |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[13].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[13].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[13].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[13].institutions[0].type | company |
| authorships[13].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[13].institutions[0].country_code | DE |
| authorships[13].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Zhihao Ding |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[14].author.id | https://openalex.org/A5061758764 |
| authorships[14].author.orcid | https://orcid.org/0000-0003-0657-4032 |
| authorships[14].author.display_name | Jan Jensen |
| authorships[14].countries | DE |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[14].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[14].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[14].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[14].institutions[0].type | company |
| authorships[14].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[14].institutions[0].country_code | DE |
| authorships[14].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Jan Nygaard Jensen |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[15].author.id | https://openalex.org/A5062928181 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-2097-0915 |
| authorships[15].author.display_name | Johann de Jong |
| authorships[15].countries | DE |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I1330995197 |
| authorships[15].affiliations[0].raw_affiliation_string | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| authorships[15].institutions[0].id | https://openalex.org/I1330995197 |
| authorships[15].institutions[0].ror | https://ror.org/00q32j219 |
| authorships[15].institutions[0].type | company |
| authorships[15].institutions[0].lineage | https://openalex.org/I1330995197 |
| authorships[15].institutions[0].country_code | DE |
| authorships[15].institutions[0].display_name | Boehringer Ingelheim (Germany) |
| authorships[15].author_position | last |
| authorships[15].raw_author_name | Johann de Jong |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41467-025-56625-z.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep representation learning for clustering longitudinal survival data from electronic health records |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W2159052453, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W2803255133, https://openalex.org/W2669956259, https://openalex.org/W4249005693, https://openalex.org/W4392946183, https://openalex.org/W4405887298 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41467-025-56625-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S64187185 |
| best_oa_location.source.issn | 2041-1723 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2041-1723 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nature Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41467-025-56625-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nature Communications |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41467-025-56625-z |
| primary_location.id | doi:10.1038/s41467-025-56625-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S64187185 |
| primary_location.source.issn | 2041-1723 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2041-1723 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nature Communications |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41467-025-56625-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nature Communications |
| primary_location.landing_page_url | https://doi.org/10.1038/s41467-025-56625-z |
| publication_date | 2025-03-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3160137267, https://openalex.org/W3017637887, https://openalex.org/W3005713150, https://openalex.org/W6739901393, https://openalex.org/W4375858857, https://openalex.org/W4399363701, https://openalex.org/W3136539405, https://openalex.org/W2790460527, https://openalex.org/W2995533571, https://openalex.org/W3172491123, https://openalex.org/W3082392924, https://openalex.org/W2280853297, https://openalex.org/W2018116321, https://openalex.org/W3123284220, https://openalex.org/W3161476655, https://openalex.org/W2730106296, https://openalex.org/W3042895962, https://openalex.org/W2987169144, https://openalex.org/W569478347, https://openalex.org/W3141119047, https://openalex.org/W3179210920, https://openalex.org/W2284443530, https://openalex.org/W2112081648, https://openalex.org/W4285133548, https://openalex.org/W3215408985, https://openalex.org/W2953302385, https://openalex.org/W3007965235, https://openalex.org/W149223726, https://openalex.org/W4224273814, https://openalex.org/W3026925112, https://openalex.org/W4286587358, https://openalex.org/W1825500864, https://openalex.org/W4289521752, https://openalex.org/W1964065471, https://openalex.org/W1967651790, https://openalex.org/W3138278578, https://openalex.org/W1988964423, https://openalex.org/W2959492986, https://openalex.org/W1975705143, https://openalex.org/W4292332559, https://openalex.org/W4309306035, https://openalex.org/W4307338411, https://openalex.org/W2571503386, https://openalex.org/W3096806131, https://openalex.org/W2020871044, https://openalex.org/W2142514968, https://openalex.org/W2923757114, https://openalex.org/W4405441807, https://openalex.org/W4311691554, https://openalex.org/W4304991627, https://openalex.org/W3119337167, https://openalex.org/W2082704080, https://openalex.org/W2317648909, https://openalex.org/W2222512263, https://openalex.org/W2889326414, https://openalex.org/W3102206498, https://openalex.org/W1987971958, https://openalex.org/W1969208427, https://openalex.org/W2944890781, https://openalex.org/W4380356336, https://openalex.org/W4319334383, https://openalex.org/W3213394313, https://openalex.org/W1990984830, https://openalex.org/W3122679952, https://openalex.org/W4226156516, https://openalex.org/W2191084826, https://openalex.org/W3105398416, https://openalex.org/W2557074642 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 67, 136 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.We | 82 |
| abstract_inverted_index.an | 102 |
| abstract_inverted_index.as | 76 |
| abstract_inverted_index.be | 135 |
| abstract_inverted_index.in | 53, 126, 144 |
| abstract_inverted_index.of | 6, 147 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 22, 32, 45, 104 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.and | 40, 56, 92, 117, 122 |
| abstract_inverted_index.can | 48, 134 |
| abstract_inverted_index.for | 17, 71, 139 |
| abstract_inverted_index.the | 145 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.fail | 31 |
| abstract_inverted_index.four | 110 |
| abstract_inverted_index.from | 78 |
| abstract_inverted_index.many | 28 |
| abstract_inverted_index.risk | 42, 55, 118 |
| abstract_inverted_index.show | 83, 131 |
| abstract_inverted_index.that | 47, 84, 132 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.tool | 138 |
| abstract_inverted_index.with | 96, 113 |
| abstract_inverted_index.event | 54 |
| abstract_inverted_index.great | 51 |
| abstract_inverted_index.known | 97 |
| abstract_inverted_index.major | 15 |
| abstract_inverted_index.novel | 24, 141 |
| abstract_inverted_index.still | 49 |
| abstract_inverted_index.health | 12, 80 |
| abstract_inverted_index.address | 61 |
| abstract_inverted_index.between | 37 |
| abstract_inverted_index.capture | 34 |
| abstract_inverted_index.cluster | 99 |
| abstract_inverted_index.complex | 35 |
| abstract_inverted_index.display | 50 |
| abstract_inverted_index.events, | 43 |
| abstract_inverted_index.factors | 125 |
| abstract_inverted_index.labels. | 100 |
| abstract_inverted_index.leading | 44 |
| abstract_inverted_index.machine | 19 |
| abstract_inverted_index.methods | 88 |
| abstract_inverted_index.patient | 9, 25, 142 |
| abstract_inverted_index.provide | 14 |
| abstract_inverted_index.records | 13 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.uncover | 23 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.accurate | 4 |
| abstract_inverted_index.baseline | 87 |
| abstract_inverted_index.datasets | 95 |
| abstract_inverted_index.disease, | 106 |
| abstract_inverted_index.disease. | 128 |
| abstract_inverted_index.distinct | 111 |
| abstract_inverted_index.existing | 29 |
| abstract_inverted_index.learning | 20 |
| abstract_inverted_index.medicine | 2, 149 |
| abstract_inverted_index.powerful | 137 |
| abstract_inverted_index.records. | 81 |
| abstract_inverted_index.relevant | 8, 124 |
| abstract_inverted_index.requires | 3 |
| abstract_inverted_index.survival | 74 |
| abstract_inverted_index.Crohn’s | 105, 127 |
| abstract_inverted_index.Precision | 1 |
| abstract_inverted_index.benchmark | 94 |
| abstract_inverted_index.diagnosis | 38, 115 |
| abstract_inverted_index.divergent | 114 |
| abstract_inverted_index.extracted | 77 |
| abstract_inverted_index.molecular | 58 |
| abstract_inverted_index.precision | 148 |
| abstract_inverted_index.profiles, | 119 |
| abstract_inverted_index.revealing | 120 |
| abstract_inverted_index.subgroups | 46, 112, 143 |
| abstract_inverted_index.synthetic | 91 |
| abstract_inverted_index.Electronic | 11 |
| abstract_inverted_index.VaDeSC-EHR | 85, 107, 133 |
| abstract_inverted_index.adequately | 33 |
| abstract_inverted_index.approaches | 21, 30 |
| abstract_inverted_index.challenge, | 63 |
| abstract_inverted_index.clinically | 7, 121 |
| abstract_inverted_index.clustering | 72 |
| abstract_inverted_index.electronic | 79 |
| abstract_inverted_index.identifies | 109 |
| abstract_inverted_index.leveraging | 18 |
| abstract_inverted_index.real-world | 93 |
| abstract_inverted_index.subgroups. | 10, 26 |
| abstract_inverted_index.underlying | 57 |
| abstract_inverted_index.VaDeSC-EHR, | 66 |
| abstract_inverted_index.application | 103 |
| abstract_inverted_index.approaches. | 150 |
| abstract_inverted_index.autoencoder | 70 |
| abstract_inverted_index.development | 146 |
| abstract_inverted_index.discovering | 140 |
| abstract_inverted_index.genetically | 123 |
| abstract_inverted_index.implemented | 65 |
| abstract_inverted_index.mechanisms. | 59 |
| abstract_inverted_index.outperforms | 86 |
| abstract_inverted_index.variational | 69 |
| abstract_inverted_index.ground-truth | 98 |
| abstract_inverted_index.interactions | 36 |
| abstract_inverted_index.longitudinal | 73 |
| abstract_inverted_index.successfully | 108 |
| abstract_inverted_index.trajectories | 39, 116 |
| abstract_inverted_index.heterogeneity | 52 |
| abstract_inverted_index.opportunities | 16 |
| abstract_inverted_index.identification | 5 |
| abstract_inverted_index.disease-relevant | 41 |
| abstract_inverted_index.transformer-based | 68 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 16 |
| citation_normalized_percentile.value | 0.99416618 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |